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In condensed matter physics, the term “chiral anomaly” implies the violation of the separate number
conservation laws of Weyl fermions of different chiralities in the presence of parallel electric and magnetic
fields. One effect of the chiral anomaly in the recently discovered Dirac and Weyl semimetals is a positive
longitudinal magnetoconductance. Here we show that chiral anomaly and nontrivial Berry curvature effects
engender another striking effect in Weyl semimetals, the planar Hall effect (PHE). Remarkably, the PHE
manifests itself when the applied current, magnetic field, and the induced transverse “Hall” voltage all lie in
the same plane, precisely in a configuration in which the conventional Hall effect vanishes. In this work we
treat the PHE quasiclassically, and predict specific experimental signatures for type-I and type-II Weyl
semimetals that can be directly checked in experiments.
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Introduction.—In condensed matter physics, the Weyl
equation, originally introduced in high energy physics [1],
describes the low energy quasiparticles near the touching of
a pair of nondegenerate bands in a class of topological
systems known asWeyl semimetals (WSM) [2–9]. InWSMs
the momentum space touching points of nondegenerate
pairs of bands act as the source and sink of theAbelian Berry
curvature, an analog of the magnetic field but defined in
momentum space [10]. WSMs violate spatial inversion and/
or time reversal symmetries [6–9], and are topologically
protected by a nonzero flux of Berry curvature across the
Fermi surface. By Gauss’s theorem, the flux of the Berry
curvature known as the Chern number is related to the
strength of the magnetic monopole enclosed by the Fermi
surface, and is quantized to integer values. It can be shown
that [11,12] in WSMs the Weyl points come in pairs of
positive and negative monopole charges (also called chiral-
ity) and the net monopole charge summed over all the Weyl
points in the Brillouin zone vanishes.
In k · p theory, the effective Hamiltonian for the low

energy linearly dispersing quasiparticles near an isolated
Weyl point situated at momentum space point K can be
written as,

Hk ¼
X3
i¼1

viðkiÞσi; ð1Þ

where the crystal momenta ki are measured from the band
degeneracy pointK, ℏ ¼ c ¼ 1, and σis are the three Pauli
matrices. WSMs evince many anomalous transport and
optical properties, such as the anomalous Hall effect in time
reversal broken WSMs, the dynamic chiral magnetic effect
related to optical gyrotropy, and natural optical activity in
inversion broken WSMs [13,14], and, most importantly,

negative longitudinal magnetoresistance in the presence of
parallel electric and magnetic fields due to nonconservation
of separate electron numbers of opposite chirality for
relativistic massless fermions, an effect known as the chiral
or Adler-Bell-Jackiw anomaly [7–9,11–13,13–15,15–19].
In the absence of parallel electric and magnetic fields in

WSMs, as for relativistic chiral fermions in high energy
physics, the numbers of right- and left-handed Weyl fer-
mions (i.e., Weyl fermions of different chiralities) are
separately conserved.However, in the presence of externally
imposed parallel electric and magnetic fields, the separate
number conservation laws are violated [16,18], leaving only
the total number of fermions to be conserved. For weak
magnetic fields for which the Landau level quantization is
wiped out by disorder effects, a semiclassical description
[20–22] of magnetoresistance suggests that E · B ≠ 0 leads
to a positive longitudinal magnetoconductance (LMC) as a
result of chiral anomaly, while the transverse magnetoresist-
ance remains positive and conventional. Consistent with this
picture, recently several experimental groups have found
evidence of chiral anomaly induced positive LMC in Dirac
and Weyl materials [23–28].
In this Letter we discuss a second effect of the chiral

anomaly, the so-called planar Hall effect [29], i.e., the
appearance of an in-plane transverse voltage when the
coplanar electric and magnetic fields are not perfectly
aligned with each other. The planar Hall conductivity
(PHC) σyx, i.e., the transverse conductivity measured across
the ŷ direction perpendicular to the applied electric field and
current in the x̂ direction in the presence of a magnetic field
in the x-y plane making an angle θwith the x axis, is known
to occur in ferromagnetic systems [30–34] with dependence
on θ similar to what we find here forWSMs. It has also been
observed recently with similar angular dependence in the
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surface state of a topological insulator where it has been
linked to magnetic field induced anisotropic lifting of the
protection of the surface state frombackscattering [35].Here
we develop a quasiclassical theory of the planarHall effect in
Weyl semimetals, where the electron or hole Fermi surfaces
enclose nonzero fluxes of the Berry curvature in momentum
space. Unlike the anomalous Hall effect understood quasi-
classically in terms of Berry curvature effects [36], to the
best of our knowledge the planar Hall effect has so far not
been discussed as a topological response function. Our
treatment of the planar Hall effect (PHE) in terms of chiral
anomaly and nontrivial Berry curvature, along with specific
experimental signatures in type-I and type-II WSMs, is an
important first step to fill this gap.
ModelHamiltonian.—The momentum space Hamiltonian

for a generic single chiral Weyl node can be expressed as

Hk
χ ¼ ℏvFðχk · σ þ Ckxσ0Þ; ð2Þ

where vF is the Fermi velocity, χ is the chirality associated
with the Weyl node, σ represents the vector of Pauli
matrices, σ0 is the identity matrix, andC is the tilt parameter
which can be taken along the kx direction without any loss
of generality [37]. When the anisotropy is zero, i.e., C ¼ 0,
electron and hole bands touch at the Weyl point leading to a
pointlike Fermi surface. When the anisotropy along kx is
small enough (C ¼ 0.5), the Fermi surface is still pointlike
and is classified as the type-I Weyl node. With the increase
in anisotropy (jCj > 1), electron and hole pockets now
appear at the Fermi surface leading to a distinct phase which
is classified as a type-II Weyl node.
Planar Hall effect.—We will now investigate the elec-

tronic contributions to the planar Hall conductivity in
the quasiclassical Boltzmann formalism [20–22]. The
Boltzmann formalism is valid because for the scattering
time τ ∼ 10−13 s in typical Dirac and Weyl semimetals
[38–40] and the effective massm� ∼ 0.11me [38,40], ωcτ ∼
0.3 < 1 for typical magnetic field B ∼ 3–5 T, where
ωc ¼ eB=m�c is the cyclotron frequency. Additionally,
we use the standard relaxation time approximation
[20,22], which assumes that any perturbation in the system
decays exponentially with a characteristic time constant τ.
This approximation is valid in isotropic systems with elastic
(impurity dominated) scattering processes generally valid in
WSMs [41]. We begin with the linear response equation for
the charge current (J) to external perturbative fields (electric
field E and temperature gradient ∇T), which is given by

Ja ¼ σabEb þ αabð−∇bTÞ; ð3Þ

where σ̂ and α̂ are different conductivity tensors. A phe-
nomenological Boltzmann transport equation can bewritten
as [42]

� ∂
∂tþ _r · ∇r þ _k · ∇k

�
fk;r;t ¼ Icollffk;r;tg; ð4Þ

where on the right side Icollffk;r;tg is the collision integral
that incorporates the effects of electron correlations and
impurity scattering. We are interested in computing the
electron distribution function which is given by fk;r;t. Since
we are primarily interested in steady-state solutions to the
Boltzmann equation, Eq. (4) can be rewritten as

ð_r · ∇r þ _k · ∇kÞfk ¼
feq − fk
τðkÞ ; ð5Þ

where we have invoked the relaxation time approximation
for the collision integral and also dropped the r dependence
of fk;r;t, valid for spatially uniform fields. The relaxation
time τðkÞ on the Fermi surface can, in general, have a
momentum dependence but we will ignore this dependence
in our work as it does not change any of our qualitative
conclusions. The function feq is the equilibrium Fermi-
Dirac distribution function that describes electron distribu-
tion in the absence of any external fields. It is now well
established that the low energy transport properties are
substantially modified due to the Berry curvature of the
electron wave functions [10].
To calculate the planar Hall effect, we apply an electric

field (E) along the x axis and a magnetic field (B) in the xy
plane at a finite angle θ from the x axis, i.e., B¼Bcosθx̂þ
Bsinθŷ, E ¼ Ex̂. In the presence of the Berry curvature
associated with a single chiral Weyl node, the quasiclassical
equations of motion are [43]

_r ¼ DðB;ΩkÞ
h
vk þ e

ℏ
ðE ×ΩkÞ þ

e
ℏ
ðvk ·ΩkÞB

i
; ð6Þ

ℏ _k ¼ DðB;ΩkÞ
h
eEþ e

ℏ
ðvk ×BÞ þ e2

ℏ
ðE ·BÞΩk

i
: ð7Þ

Here, DðB;ΩkÞ ¼ ½1þ ðe=ℏÞðB ·ΩkÞ�−1 is the phase
space factor, where Ωk is the Berry curvature, and vk is
the group velocity [44]. For ease of notation hereafter we
will simply denoteDðB;ΩkÞ byD, dropping the implied B
and Ωk dependence. Substituting the above equations of
motion into the steady state Boltzmann equation (5), it then
takes the form

�
eEvx
ℏ

þe2

ℏ
BEcosθðvk:ΩkÞ

�∂feq
∂ϵ

þeB
ℏ2

�
−vzsinθ

∂
∂kxðvxsinθ−vycosθÞ

∂
∂kzþvzcosθ

∂
∂ky

�
fk

¼feq−fk
Dτ

: ð8Þ

We solve the above equation by assuming the following
ansatz for the deviation of the electron distribution function
δfk ¼ fk − feq
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δfk¼
�
eDEτvxþ

e2DBEτcosθðvk ·ΩkÞ
ℏ

þv ·Γ
��∂feq

∂ϵ
�
;

ð9Þ

where Γ is the correction factor due to magnetic field B.
Plugging δfk into Eq. (8), we have

eB
ℏ2

�
−vz sinθ

∂
∂kxþvzcosθ

∂
∂kyþðvx sinθ−vy cosθÞ

∂
∂kz

�
�
eEDτ

�
vxþ

eBcosθ
ℏ

ðvk ·ΩkÞ
�
þv ·Γ

�
¼ v ·Γ

Dτ
: ð10Þ

We now calculate the correction factor Γ, which vanishes in
the absence of any magnetic field B, by expanding the
inverse band mass that arises in Eq. (10), and noting the fact
that the above equation is valid for all values of velocity. The
Boltzmann distribution function fk is then evaluated to be

fk¼feq−eDEτ

�
vxþ

eBcosθ
ℏ

ðvk ·ΩkÞ
�∂feq

∂ϵ
−eDEτðvxcx sinθþvycy cosθþvzczÞ

∂feq
∂ϵ ; ð11Þ

where cx, cy, and cz are correction factors that incorporate
Berry phase effects and are related to Γ (see the Supple-
mental Material [45]).
In the absence of any thermal gradient, the charge current

can be written as J ¼ e
R ½d3k�D−1 _rfk, accounting for the

modified density of states due to the phase space factor D.
Substituting fk into this equation and comparing it with
Eq. (3), we now arrive at the expression for the longitudinal
electrical conductivity

σxx¼e2
Z

d3k
ð2πÞ3 τ

�
D

�
vxþ

eBcosθ
ℏ

ðvk ·ΩkÞ
�
2
��

−
∂feq
∂ϵ

�
;

ð12Þ

where we have dropped the other terms that vanish upon
integration around a single Weyl node, or are of a much
smaller order of magnitude compared to others in typical
Weyl metals. In the above equation the anomalous velocity
factor ðeB cos θ=ℏÞðvk ·ΩkÞ arises due to the topological
chiral anomaly term which gives a finite B-dependent
longitudinal electrical conductivity, which is otherwise
absent for a regular Fermi liquid. When θ ¼ 0, we recover
the formula for LMC for parallel E and B fields as derived
in earlier works [20–22,41,46]. Now substituting fk from
Eq. (11) into Eq. (3), we then arrive at the following
expression for the electrical Hall conductivity:

σyx¼e2
Z

d3k
ð2πÞ3Dτ

�
−
∂feq
∂ϵ

���
vyþ

eBsinθ
ℏ

ðvk ·ΩkÞ
�

×
�
vxþ

eBcosθ
ℏ

ðvk ·ΩkÞ
��

−
e2

ℏ

Z
d3k
ð2πÞ3Ωzfeqþe2

×
Z

d3k
ð2πÞ3 τðsinθcxvxþcosθcyvyþczvzÞvy

�
−
∂feq
∂ϵ

�
:

ð13Þ
In the above expression the second momentum space
integral (of the Berry curvature Ωz) in the above equation
corresponds to the regular anomalousHall contribution (σaxy)
from a single Weyl node. Summed over all the nodes this
term is non-zero for time reversal broken WSMs but
vanishes for inversion broken WSMs as the integral over
the Berry curvature vanishes in the presence of time reversal
symmetry. We shall not consider this term any further as we
are only interested in the chiral anomaly induced contribu-
tion to the Hall conductivity. We also note that our present
Boltzmann treatment with energy independent scattering
time defined on the Fermi surface is valid for μ ≫ kBT;ℏωc
[22,41], and in this limit the values of the terms involving cx,
cy, cz are orders of magnitude smaller than the contribution
from the rest in Eq. (13). We then arrive at our final
expression for the chiral anomaly induced planar Hall
conductivity,

σPHEyx ¼ e2
Z

d3k
ð2πÞ3Dτ

�
−
∂feq
∂ϵ

��
eB sin θ

ℏ
ðvk ·ΩkÞ

×

�
vx þ

eB cos θ
ℏ

ðvk ·ΩkÞ
��

. ð14Þ

Equations (12), (14) are the central results of this Letter.
The numerical calculations to compute LMC and PHC have
been performed for a prototype lattice model of a time
reversal symmetry breaking Weyl semimetal with the lattice
regularization providing a physical ultraviolet cutoff to the
momentum integrals. The prototype latticemodel is given by

Hk ¼ HLðkÞ þHTðkÞ; ð15Þ
where HL produces a pair of Weyl nodes of type I at
ð�k0; 0; 0Þ [47],

HLðkÞ ¼
�
m

�
cosðkybÞ þ cosðkzcÞ − 2

�

þ 2t

�
cosðkxaÞ − cos k0

��
σ1 − 2t sinðkybÞσ2

− 2t sinðkzcÞσ3: ð16Þ

Here, m is the mass and t is the hopping parameter. The
second term of the HamiltonianHT tilts the nodes along the
kx direction, and can be written as

HTðkÞ ¼ γ½cosðkxaÞ − cos k0�σ0; ð17Þ
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where γ is the tilt parameter. The 3D band dispersion of the
lattice model of aWeyl semimetal is shown in Fig. 1.We first
examine Eq. (14) for γ ¼ 0, the case of a type-I WSM. After
performing the momentum space integrals, and retaining
only the nonvanishing terms, σphxy is given by

σphyx ¼ e2
Z

d3k
ð2πÞ3Dτ

�
−
∂feq
∂ϵ

�
e2B2 sin θ cos θ

ℏ2
ðvk ·ΩkÞ2:

ð18Þ
Clearly, when θ ¼ 0; π=2, σphyx ¼ 0, as expected, and the net
Hall conductivity is determined by the Berry phase induced
anomalous Hall contribution (if present as in the case of a
time reversal brokenWSM).But σphyx inEq. (18) is generically
nonzero for any other arbitrary angle.
Using Eqs. (12), (14) we can now express σxx and σphyx in

terms of the diagonal components of the conductivity
tensor, σ∥ and σ⊥, corresponding to the cases when the
current flows along and perpendicular to the magnetic field.
Substituting θ ¼ 0 and θ ¼ π=2 into Eq. (12) we have

σ∥ ¼ σ þ e4
Z

d3k
ð2πÞ3Dτ

�
−
∂feq
∂ϵ

�
B2

ℏ2
ðvk ·ΩkÞ2;

σ⊥ ¼ σ: ð19Þ
Equations (12) and (18) thus take the form

σxx ¼ σ⊥ þ Δσcos2θ;

σphyx ¼ Δσ sin θ cos θ; ð20Þ
where Δσ ¼ σ∥ − σ⊥ gives the anisotropy in conductivity
due to chiral anomaly. The amplitude of planar Hall con-
ductivity shows B2 dependence, i.e., Δσ ∝ B2 for any value
of θ except for θ ¼ 0 and θ ¼ π=2 as shown in Fig. 2(b),
whereas LMC has the finite value for all field directions and
follows the B2 dependence except at θ ¼ π=2 [inset of
Fig. 2(b)]. The longitudinal magnetoconductivity has the
angular dependence of cos2 θ, which is shown in Fig. 2(c),
leading to the anisotropic magnetoresistance (AMR)

[48–50], whereas the planar Hall conductivity follows the
cos θ sin θ dependence as depicted in Fig. 2(d). Note that the
planar Hall conductivity discussed here does not satisfy
the antisymmetry property of regular Hall conductivity
ðσxy ¼ −σyxÞ since its origin is linked to the topological
chiral anomaly term and not to a conventional Lorentz force
and this fact can be used to remove the regular Hall
contribution from the total Hall response to isolate the
PHE in experiments by taking measurements with both
positive and negative B. On the other hand, the planar
Hall effect can be distinguished from the anomalous Hall
effect by taking measurements with both B ¼ 0 and B ≠ 0
and subtracting the background (B ¼ 0) contribution.
In Fig. 3 we have plotted the numerically calculated LMC

(σxx) for a type-IIWSMas a function ofB, whereE is applied
along the tilt direction (x axis). Our calculations suggest that
the LMC follows a B-linear dependence [51] when both the
applied magnetic field and electric field are parallel to the tilt
axis [also valid for 0 ≤ θ < π=2 in the first quadrant of the
plane Fig. 2(a)] as depicted in Fig. 3(a). For a nonzero
magnetic field, LMC shows cos θ dependence for the same
configuration of the applied E and B as shown in Fig. 3(b).
Further, the planar Hall conductivity (σphyx at θ ¼ π=4)
computed using Eq. (14) also follows the linear B depend-
ence at any angle 0 < θ ≤ π=2 in first quadrant of the plane
when the appliedE is along the tilt axis, and it also shows the
sin θ angular dependence at finite magnetic field for the same
configuration. However, theB dependence of both LMC and

FIG. 1. 3D band dispersion of the lattice model of a Weyl
semimetal (kz is suppressed) obtained by the diagonalizing
Hamiltonian in Eq. (15) for (a) γ ¼ 0 (type-I Weyl nodes),
(b) γ ¼ 0.05 (type-I Weyl nodes), and (c) γ ¼ 0.15 (type-II Weyl
nodes), respectively. The chemical potential is set at zero energy
(indicated by the dashed line). The Weyl cones are at ðk0; 0; 0Þ
and ð-k0; 0; 0Þ. The parameters used are t ¼ −0.005 eV,
m ¼ 0.15 eV, and k0 ¼ ðπ=2Þ.
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FIG. 2. (a) Illustration for the planar Hall effect measurement
setup (VH is the in-plane Hall voltage). (b) The normalized
amplitude of planar Hall conductivity (Δσ) as a function of
magnetic field for the lattice model of the Weyl semimetal given
by Eq. (15) for γ ¼ 0. (Inset shows longitudinal magnetoconduc-
tivity as a function of magnetic field). Both PHC and LMC
amplitudes show B2 dependence on the magnetic field. (c)–(d)
The angular dependence of longitudinal magnetoconductivity and
planar Hall conductivity for B ¼ 5 T. [We have normalized the y
axes of (c) and (d) by σxxðθ ¼ 0Þ and σphyxðθ ¼ π=4Þ respectively.]
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PHC is quadratic in B when the electric field is applied
perpendicular to the tilt direction. The appropriate systems for
measurement of this anisotropy are the recently discovered
type-II WSMs such as WTe2 [52] and MoTe2 [53].
Conclusion.—In this work we have presented a quasi-

classical theory of the chiral anomaly induced planar Hall
effect in Weyl semimetals. We derived an analytical expres-
sion for planar Hall conductivity and also elucidated its
generic behavior for type-I and type-II WSMs. Unlike the
anomalousHall effect [36], to the best of our knowledge PHE
has not been described as a topological response function in
terms of the Berry phases, and our unified treatment of PHE
and LMC in terms of chiral anomaly andBerry phase effects,
together with experimental predictions in type-I and type-II
Weyl semimetals, is an important first step in this direction.
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FIG. 3. (a) The normalized longitudinal magnetoconductivity
computed numerically for the lattice model of the Weyl semi-
metal given by Eq. (15) with tilt parameter γ ¼ 0.15 as a function
of the magnetic field B applied along the tilt direction (x axis).
(b) The angular dependence of the longitudinal magnetoconduc-
tivity for B ¼ 5 T (applied parallel to the tilt direction) and
γ ¼ 0.15. (c)–(d) The same for planar Hall conductivity for the
parameters mentioned above.
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