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Within a plane-wave approximation in scattering, an incoming wave packet’s Wigner function stays
positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement.
With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely
quantum regime where the latter effects become only moderately attenuated. Here we show how to probe
negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets
with a nonvanishing impact parameter between them (a Schrödinger’s cat state) by atomic targets. For
hydrogen in the ground 1s state, a small parameter of the problem, a ratio a=σ⊥ of the Bohr radius a to the
beam width σ⊥, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons,
which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the
not-everywhere-positive Wigner functions and the probing of such quantum effects can open new
perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
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Introduction.—The conventional scattering theory deals
with wave packets whose width in momentum space is
vanishingly small and whose spatial extent is much larger
than that of a target. In high-energy physics there are very few
examples in which this plane-wave approximation fails to
work, see [1–8], while low-energy scattering with subnan-
ometer-sized beams of modern electron microscopes can be
describedwithin a paraxial (akin toWKB) framework [8–10].
Neglect of the transverse coherence effects led to significant
discrepancies between the theoryand experiments in ion-atom
collisions, resolved by using the Gaussian packets [11,12].
What is less realized is that the incomingwavepackets’density
matrices in phase space, theWigner functions [13], turn out to
be positive everywhere in the paraxial regime, whereas their
negative values may become prominent only when the beams
are focused to a spot comparable to the Compton wavelength
[8], σ⊥ ∼ λc ¼ ℏ=ðmcÞ, which is 3.9 × 10−11 cm for an
electron. That is why effects induced by theWigner function’s
regions of negativity have never been observed in particle or
atomic collisions.
However, when the projectile’s wave function is not

Gaussian or when it represents a coherent superposition of
packets, the genuine quantum effects arising from theWigner
function’s possible negativity, such as nonlocality and entan-
glement, may become noticeable at much larger scales. A
simple example here is a superposition of two coherent states
separated by an impact parameter 2r0, jr0i � j − r0i, the so-
called Schrödinger’s cat state widely used in quantum optics
where the negative values of itsWigner function aremeasured
[14–16] and even teleported [17]. Other examples of systems
with the not-everywhere-positive Wigner functions embrace

ensembles of thousands of cold entangled atoms [18],
quantum bosonic gases [19], twisted photons [20], etc. In
electron microscopy with atomic-scale resolution, noninva-
sive imaging—say, of biological systems—requires the use of
the beams coherently split into two parts [21]. Because of the
quantum interference, such beams can also possess Wigner
functions that turnnegative in some regionsof thephase space;
therefore, their scattering cannot be described within the
existing theory.
In this Letter we show that elastic scattering of an

electronic cat state by atomic targets reveals interference
effects, inaccessible in the paraxial approximation. A small
parameter of the problem turns out to be a ratio of the
potential radius a to the beam width σ⊥, which is 1=α ¼
137 times larger than λc=σ⊥ for hydrogen (a ≈ 0.053 nm is
a Bohr radius). As beams of the electron microscopes have
already been focused to an angstrom-size spot [22–24], one
can enter a genuinely quantum (or deeply non-plane-wave)
regime of scattering, in which the projectile’s probability
density becomes spatially inhomogeneous on the atomic
scale, the packets’ width in momentum space is finite, and
the Wigner functions are treated nonperturbatively (cf. [8]).
Effects of the possible nonclassicality are only moderately
attenuated here, which is of crucial importance for, for
instance, the interaction-free quantum measurements
[21,25], and may lead to new schemes of the quantum
tomography of electrons and other massive particles.
As a hallmark of strong quantum interference, we predict

an azimuthal asymmetry of the scattered electrons, which
reaches the values of 10% when σ⊥ ≳ a and oscillates with
r0 when r0 ≳ σ⊥. The effect does not appear within the
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Born approximation with the Gaussian beams, even for an
off-axis collision. Moreover, the asymmetry vanishes for
wide beams, a=σ⊥ ≪ 1, when the impact parameter
between the two packets is large, r0 ≫ σ⊥, and when
the beam is just an incoherent statistical mixture of packets.
We argue that this phenomenon can be reliably detected
with existing technology. Beams of massive particles with
the not-everywhere-positive Wigner functions can become
a useful tool for imaging atoms, molecules, surface
inhomogeneities, biological samples, etc., along with the
vortex electrons [24] or neutrons [26], for instance, for
quantum information, quantum tomography, and even for
particle physics. For the sake of brevity, we set ℏ ¼ 1. All
vectors, except Q and pf, have two components.
Wigner function of a Schrödinger’s cat state.—Consider

a systemof twoGaussianpacketsmovingalong thez axiswith
the same mean momentum f0; 0; pig, coordinate uncertain-
tiesσz andσ⊥, and separatedbyadistance2r0 ≡ 2fx0; y0; 0g.
Its transverse wave function in the momentum representation
is a coherent superposition of two packets

ψ1�1ðpÞ¼
ψ1ðpÞffiffiffi

2
p e−ir0·p�eir0·pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�exp½−r20=ð2σ2⊥Þ�
p ;

Z
d2pjψ1�1ðpÞj2¼1; ð1Þ

where ψ1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2⊥=π

p
expð−σ2⊥p2Þ,

R
d2pjψ1ðpÞj2 ¼ 1,

is a wave function of one packet. Drawing an analogy to
quantumoptics,we shall call the statesψ1þ1 andψ1−1 an even
and an odd cat state, respectively. The Wigner function at
t ¼ 0 (see, for instance, [27]) is

W1�1ðr;pÞ¼
Z

d2k
ð2πÞ2e

ik·rψ�
1�1ðp−k=2Þψ1�1ðpþk=2Þ

¼ W1ðr;pÞ
1�exp½−r20=ð2σ2⊥Þ�
× ½coshðr0 ·r=σ2⊥Þe−r

2
0
=ð2σ2⊥Þ �cosð2r0 ·pÞ�; ð2Þ

where

W1ðr; pÞ ¼
1

π2
exp½−2σ2⊥p2 − r2=ð2σ2⊥Þ� ð3Þ

is an everywhere-positive Wigner function of one packet.
It is the interference term, cosð2r0 · pÞ, that is responsible

for possible negativity in some regions of the phase space.
The function W1þ1 can be negative when

r0 ≳ σ⊥ ∼ 1=p⊥; ð4Þ
i.e. the distance between the two packets gets larger than
the packet’s width σ⊥ (see Fig. 1), whereas this function
stays everywhere positive when r0 ≲ σ⊥ (see Fig. 2). The
function W1−1, in contrast, has prominent negative regions
even when r0 ≈ σ⊥. For smaller values, r0 < σ⊥, the odd
cat state, unlike the even one, reveals a somewhat fermionic
behavior with the packets staying separated by the distance
≈2σ⊥, as shown in Fig. 2. That is why in what follows we
stick to the case r0 ≥ σ⊥ for the odd cat state.

For an incoherent mixture of two one-particle Wigner
functions,

1

2
½W1ðr; p; r0Þ þW1ðr; p;−r0Þ� ∝ coshðr0 · r=σ2⊥Þ; ð5Þ

which takes place for mixed states for instance [27], the
interference term is absent. As a result, this sum stays
everywhere positive and looks exactly like the probability
density shown in the upper panel of Fig. 1.
Scattering of a Schrödinger’s cat by atoms.—Let us now

study elastic scattering of such a system off a central
potential with an effective radius a in the Born approxi-
mation. In order to describe collisions beyond the plane-
wave model, one should employ the theory recently
developed by us in Refs. [9,10]. We consider an exper-
imentally relevant scenario in which (i) the packet’s
longitudinal size σz is larger than the field radius,
σz ≫ a, and (ii) the packet’s dispersion in the transverse
plane is negligible during the collision, that is, tdis∼
σ⊥=v⊥ ≫ tcol ∼ σz=vz. Under these assumptions, which
can be rewritten as

a ≪ σz ≪ σ2⊥pi; ð6Þ
the scattering amplitude is given by Eqs. (29) and (30) of
[9], where one can set θk ¼ 0, as θk ≈ 1=ðσ⊥piÞ ≪ 1.
Then, instead of a single scatterer, we take a macroscopic

target with a density of atoms nðbÞ, normalized asR
d2bnðbÞ ¼ 1, and with a width σt ≫ a. A number of

scattering events for an incident beam of Ne electrons,
according to Eq. (41) from [10], is

dν
dΩ

¼ Ne

Z
d2bnðbÞ d

2p
2π

d2k
2π

eib·kfðQ − p − k=2Þ

× f�ðQ − pþ k=2Þψðpþ k=2Þψ�ðp − k=2Þ; ð7Þ

where we have changed the variables k⊥, k0⊥ → p ¼
ðk⊥ þ k0⊥Þ=2, k ¼ k⊥ − k0⊥, and Q ¼ pf − piẑ with pf
being a 3D momentum of the final (plane-wave) electron,

FIG. 1. Wigner functions of the electronic Schrödinger’s cat state
(2)with x0 ¼ 3σ⊥ and σ⊥ ¼ 10a. The panels show an even cat state
(left), an odd cat state (right), and the probability density,
jψ1�1ðrÞj2 ¼

R
d2pW1�1 (upper). Parameters: y ¼ y0 ¼ py ¼ 0,

pz ¼ pi ¼ 10=aðεkin ¼ 1.4 keVÞ.
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Qz ¼ pf cos θ − pi; Q⊥ ¼ pf sin θfcosφ; sinφ; 0g:

The scattering amplitude fðQÞ is a real function in the Born
approximation.
When the target density nðbÞ varies at distances of the

order of σt ≫ a, only the small values of k≲ 1=σt ≪ 1=a
contribute to the integral (7). Therefore one can expand the
amplitudes as follows:

fðQ−p−k=2Þf�ðQ−pþk=2Þ¼ ½fðQ−pÞ�2þOðk2a2Þ;
k2a2≲a2=σ2t : ð8Þ

Within this accuracy, the integral over k brings the
projectile’s Wigner function Wðb; pÞ and we arrive at the
following basic formula:

dν
dΩ

¼ Ne

Z
d2bd2pnðbÞWðb; pÞ½fðQ − pÞ�2; ð9Þ

which couples the number of scattering events to
the target’s profile and to the Wigner function. Clearly,
possible negative values of the latter diminish the number
of events due to destructive self-interference. When the
target is homogeneous and wide, one can set nðbÞ ¼
θðR − bÞ=ðπR2Þ, and the corresponding number of events
reproduces Eq. (38) of [9], from which the standard (plane-
wave) Born results easily follow.
As the simplest example we take a Gaussian packet with

the everywhere-positive Wigner function (3) scattered by a
Gaussian target with

nðbÞ ¼ 1

2πσ2t
e−ðb−b0Þ2=ð2σ2t Þ: ð10Þ

The result is

dν1
dΩ

¼ Neσ
2⊥

π2Σ2
e−b

2
0
=ð2Σ2Þ

Z
d2p½fðQ − pÞ�2e−2σ2⊥p2

; ð11Þ

where Σ2 ¼ σ2t þ σ2⊥. This number of events depends as
exp½−b20=ð2Σ2Þ� upon the distance b0 between the center of
the target and that of the incident packet. For more
sophisticated targets, say, those with surface inhomogene-
ities, varying this distance b0 while detecting scattered
electrons at a certain angle would allow one to perform

imaging of the surface. On the other hand, for a given
target’s profile nðbÞ, measuring angular distributions of the
electrons allows one to perform quantum tomography of
the incident electron’s state (cf. [28]).
It is remarkable that Eq. (11) does not depend on the

azimuthal scattering angle φ, as one can substitute φp −
φ → φp even if the target’s center does not coincide with
that of the packet (an off-axis collision). Such azimuthal
degeneracy is a consequence of the Born approximation,
the condition of the wide target, and the axial symmetry of
the input beam (3). In order to restore the azimuthal
dependence one should either go beyond the Born approxi-
mation, or take a small non-Gaussian target, which neces-
sitates taking into account the terms Oðk2a2Þ in (8), or take
an incident beam with no azimuthal symmetry, but with a
strong quantum interference between the wave packets.
Indeed, for an incoherent (no interference) sum like (5),

Eq. (9) does not reveal azimuthal dependence, even if the
resultant beam is not symmetric. The azimuthal depend-
ence in the number of events dν arises when the in-state is
either a coherent nonsymmetric beam with an everywhere-
positiveWigner function (say, a Gaussian with σ⊥;x ≠ σ⊥;y)
or a superposition of packets with a Wigner function that is
not everywhere positive. In the latter (the “most quantum”)
case, we take the Schrödinger cat (2) and the same
Gaussian target (10). This time, we obtain

dν1�1

dΩ
¼ Ne

σ2⊥
π2Σ2

exp½−b20=ð2Σ2Þ�
1� exp½−r20=ð2σ2⊥Þ�

×
Z

d2p½fðQ − pÞ�2e−2σ2⊥p2

× ½cosh ðb0 · r0=Σ2Þe−r20=ð2Σ2Þ � cosð2r0 · pÞ�;
ð12Þ

and dependence upon the azimuthal angles of b0 and pf
persists, regardless of the amplitude f.
As a specific example, we take a target made of

hydrogen in the ground 1s state for which [10]

fðpÞ ¼ a
2

�
1

1þ ða=2Þ2p2 þ
1

½1þ ða=2Þ2p2�2
�
: ð13Þ

Then using Eq. (54) from [9] we can integrate over p and
get the following final result:

dν1�1

dΩ
¼ N1�1

Z
∞

0

dxe−xg
xþ x2 þ x3=6
1þ xa2=ð8σ2⊥Þ

×

�
cosh

�
b0 · r0
Σ2

�
e−r

2
0
=ð2Σ2Þ

� cos

�
2r0 · pf

xa2=ð8σ2⊥Þ
1þ xa2=ð8σ2⊥Þ

�

× exp

�
−

r20
2σ2⊥½1þ xa2=ð8σ2⊥Þ�

��
; ð14Þ

where

FIG. 2. The same as in Fig. 1 but for x0 ¼ σ⊥.
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N1�1 ¼
Ne

2πΣ2

�
a
2

�
2 e−b

2
0
=ð2Σ2Þ

1� e−r
2
0
=ð2σ2⊥Þ

;

g ¼ 1þ
�
a
2

�
2
�
Q2

z þ
Q2⊥

1þ xa2=ð8σ2⊥Þ
�
: ð15Þ

One may call dσ1�1=dΩ ¼ 2πΣ2N−1
e dν1�1=dΩ an effective

cross section, as it stays finite for the wide target with
Σ ≈ σt ≫ σ⊥.
The interference term in (14) turns to unity for the wide

packets, a ≪ σ⊥ (paraxial regime); however, for the well-
focused ones, σ⊥ ≳ a, destructive interference between the
two parts of the beam results in azimuthal asymmetry. This
asymmetry exists only for the moderate distances between
the packets,

r0 ≳ σ⊥ ≳ a; ð16Þ
and it vanishes when either r0 → 0 (for the even cat state—
note that this limit has no sense for the odd cat state) or
r0 ≫ σ⊥. Two coherent beams of electrons focused to
σ⊥ ∼ 0.1 nm, as in the experiments [22,23], and separated
by a comparable distance can do the job.
As shown in Figs. 3 and 4, azimuthal variation of the

cross section can reach 10% for such beams. Clearly, the
effect is stronger for the odd cat state with r0 ≈ σ⊥, but for
r0 ¼ 2σ⊥ − 3σ⊥ it is nearly the same as for the even cat
state. The width of the distributions over the scattering
angle θ in Fig. 4 is determined by the packet’s mean
momentum pi. For higher energies, the peak shifts
to smaller angles (it is around 5° for pi ¼ 30=a,
εkin ¼ 12.5 keV), whereas for lower ones it moves to
larger polar angles and widens. Meanwhile, the value of
the azimuthal asymmetry persists. With the increasing
beam width σ⊥, the asymmetry drops as σ−2⊥ . For instance,
for σ⊥ ¼ 4a (FWHM ≈ 0.5 nm) it is 0.1%–1%.

The quantum interference not only brings about the
angular asymmetry, but it also results in a periodic
dependence of the latter with r0, which is more pronounced
for the even cat state, see the upper panel in Fig. 4. Even
though the asymmetry of the same order of magnitude
can also originate in scattering of a nonsymmetric beam
with an everywhere-positive Wigner function (say, when
σ⊥;x ∼ 0.1 nm, σ⊥;y ≫ σ⊥;x), the corresponding cross sec-
tion would not contain the interference term, similar to
Eq. (11), and hence would not oscillate with the beam
width. This allows one to distinguish between the classical
effects of the beam shape and the purely quantum ones
evoked by the Wigner function’s negativity.
Experimental feasibility.—Beams of modern electron

microscopes already satisfy the needed requirements. An
optimal energy range is from 1 to several 10 s of keV, as for
the energies higher than 100 keV relativistic corrections
may become important and the asymmetry would have to
be detected at too-small polar angles. Coherent splitting of
a beam of these energies into two parts can be achieved by
employing diffraction at a periodic surface potential or at a
standing light wave due to the Kapitza-Dirac effect (see
technical details and discussion of other methods in [21]).
When averaging over many collisions with

σ⊥ ∼ 0.1–0.2 nm, one needs to control the impact param-
eter r0 with an accuracy of at least δr0 ∼ 0.5σ⊥, and the
asymmetry will be robust against smaller variations of r0.
Simultaneously, both the packets must be azimuthally
symmetric. Our calculations show that a 10%–20% differ-
ence between σ⊥;x and σ⊥;y would result in a (false)
asymmetry of 1%–2% at the same scattering angles θ,
although without the periodic dependence on r0. The latter
can be proved by making no more than three sets of
measurements, say, at r0 ¼ σ⊥, 2σ⊥, and 3σ⊥. In view of
the great progress made in recent years in the electron

FIG. 3. Azimuthal asymmetry of the electrons scattered
by a wide hydrogenic target for σ⊥ ¼ 2a ≈ 0.1 nm (FWHM≈
0.25 nm), θ ¼ 10°, r0=σ⊥ ¼ 1 (black dashed line), r0=σ⊥ ¼ 1.5
(blue solid line), and r0=σ⊥ ¼ 2 (red dotted line). Parameters:
σt ≫ σ⊥, φr0 ¼ 0, pi ¼ pf ¼ 10=a (εkin ¼ 1.4 keV).

FIG. 4. Azimuthal asymmetry for the same parameters as in
Fig. 3, but with pi ¼ pf ¼ 20=a (εkin ¼ 5.6 keV). The even cat
state (upper panel) reveals a periodic dependence on the impact
parameter r0, a hallmark of the quantum interference.
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microscopy and holography with atomic resolution, such
delicate control and manipulations, though challenging,
seem to be within technological limits.
Summary.—We showed that by studying elastic scatter-

ing of the coherent superposition of electrons by atomic
targets, one can detect a contribution of the Wigner
function’s negative values, which would reveal itself in
the azimuthal asymmetry. For subnanometer-sized beams
we predict the asymmetry up to several percent, which, if
detected, would be evidence of the previously unexplored
ultraquantum regime of scattering.
Moreover, scattering of electrons by atoms may serve not

only for the surface imaging with atomic resolution, but
also as a novel method for quantum tomography of these
beams. In high-energy physics, scattering of the states with
the not-everywhere-positive Wigner functions can become
a useful tool for probing phases of the scattering amplitudes
(cf. [4,7,8]). Along with Schrödinger cats, such beams may
include coherent superpositions of the vortex electrons and
neutrons, of Airy beams [29], and of other non-Gaussian
matter waves.
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