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A simple framework for Dirac spinors is developed that parametrizes admissible quantum dynamics and
also analytically constructs electromagnetic fields, obeying Maxwell’s equations, which yield a desired
evolution. In particular, we show how to achieve dispersionless rotation and translation of wave packets.
Additionally, this formalism can handle control interactions beyond electromagnetic. This work reveals
unexpected flexibility of the Dirac equation for control applications, which may open new prospects for
quantum technologies.
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Introduction.—The common aim of quantum control is
to find a tailored external electromagnetic field to steer the
ensuing dynamics in a desired fashion [1]. This capability, in
particular, is enabling quantum technologies with the
prospect of revolutionizing metrology, information process-
ing, andmattermanipulation.However, little is known about
the control of the Dirac equation in spite of its modern
applications reaching into nearly every domain of physics,
going far beyond its original intention [2,3]. For example,
lasers have already reached intensities where light-matter
interactions must be described within the Dirac theory [4].
Studies of the properties of heavy elements led to the
establishment of relativistic quantum chemistry [5–8] based
on the Dirac equation. Moreover, there is a growing list of
low energy systems emulating Dirac fermions in solids
[9–11], optics [12,13], cold atoms [14,15], trapped ions
[16,17], and circuit quantum electrodynamics [18].
The Dirac equation is commonly expressed as [2]

γμ½icℏ∂μ − ceAμ�ψ ¼ mc2ψ ; ð1Þ
where the summation over repeated indices is adopted, ψ is
a four-component complex spinor, m is the mass, c is the
speed of light, γμ are the 4 × 4 so-called gamma matrices,
Aμ is the four-vector potential, and μ ¼ 0, 1, 2, 3.
The Dirac equation (1) can be viewed as a “first

quantization” approximation to QED. The solutions of
Eq. (1) exclude effects such as radiation reaction and
particle creation or annihilation prominent at ultrarelativ-
istic energies. Nevertheless, Eq. (1) provides a mean-field
description of relativistic effects at low and moderate
energies. A moving Dirac electron generates the current
JμD ¼ ψ†γ0γμψ that emits secondary radiation, which is not
accounted for by Eq. (1). Therefore, a solution of the Dirac
equation is physical if the energy loss due to the secondary
radiation is much smaller than the electron kinetic energy.
This criterion should be satisfied in the applications of the
Dirac equation to quantum control.
In this Letter we present the framework of relativistic

dynamical inversion (RDI) opening up a new route to

coherent control for the Dirac dynamics: Given a desired
wave packet evolution, we analytically design electromag-
netic control fields obeying Maxwell equations. This
should be compared with other techniques such as shortcuts
to adiabaticity [19–21] analytically constructing inter-
actions that often go beyond electromagnetic fields.
The purpose of the current work is to solve the following

problem: Given an arbitrary (desired) spinorial spacetime
wave packet ψ , find an electromagnetic field Aμ such that
Eq. (1) is satisfied. This is accomplished by RDI in two
steps: First, we verify the attainability of the given evolution
ψ by assessing the existence of the underlying Aμ leading to
validMaxwell equations; second, if it exists, an explicit form
of Aμ is obtained. Moreover, the method can also be used to
assess for attainable dynamics.
The task of constructing the control field yielding the

desired dynamics at all times and positions is one of the
most important and challenging problems in quantum
control. In particular, transporting coherent wave packets
without disturbance is a required building block in quantum
technologies. RDI allows for finding analytic solutions not
feasible by other current methods. This is possible due to
unique properties of the Dirac equation.
Exact solutions of Eq. (1), a system of four partial

differential equations, are rare. The vast majority of them
are for highly symmetric stationary systems [3,22,23].
Furthermore, finding exact solutions with probability
densities having finite integrals over the whole three
dimensional space is a formidable task. Only a handful
of solutions for time dependent dynamics exist [24–31].
Most of the investigations call for either semiclassical
methods [32] or numerical calculations [33–39]. In addition
to being computationally demanding, commonly used
numerical schemes are plagued by unphysical artifacts at
the fundamental level [40,41]; thus, there is a need for
systematic construction of analytic solutions. RDI fulfills
all these needs by providing stationary as well as time-
dependent exact solutions integrable in two and three
dimensions.
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RDI simultaneously seeks the state ψ and the vector
potential Aμ describing physically admissible dynamics.
Considering that Eq. (1) is bilinear with respect to both ψ
andAμ, it may seem that the proposed approach is evenmore
challenging than solving the linear Dirac equation for ψ.
Nevertheless, the following four elements make RDI much
simpler than the traditional methods. (i) The Dirac equation
iswritten in the formwhere bothψ andAμ are 2 × 2 complex
matrices [42,43]. (ii) The cross term responsible for the
bilinearity is eliminated by expressing the vector potential as
an explicit function of the state. (iii) The physical consis-
tency of the state is accomplished by demanding the
Hermiticity of the vector potential expressed in matrix form.
(iv) Enforcing the Lorentz covariance by decomposing the
state into spacetime rotations as well as a transformation of
the internal degrees of freedom significantly reduces the
complexity of the analytic derivations.
Methodology of relativistic dynamical inversion.—The

Dirac equation (1) can be written in different forms
emphasizing the geometry of the Lorentz group [42–50].
Here, we employ the Baylis formulation [42,43,51–53] (see
also Sec. I of the Supplemental Material [54]) where the
state ψ in Eq. (1) is represented by the matrix Ψ and its
Clifford conjugate Ψ̄,

ψ ¼

0
BBB@

ψ1

ψ2

ψ3

ψ4

1
CCCA ⇔

8>>><
>>>:

Ψ ¼
�
ψ1 þ ψ3 −ψ�

2 þ ψ�
4

ψ2 þ ψ4 ψ�
1 − ψ�

3

�
;

Ψ̄ ¼
�

ψ�
1 − ψ�

3 ψ�
2 − ψ�

4

−ψ2 − ψ4 ψ1 þ ψ3

�
;

obeying the Dirac equation in the matrix form [42,43]

icℏ∂̄Ψσ3 − ceĀΨ −mc2Ψ̄† ¼ 0;

where Ā ¼ σμAμ, ∂̄ ¼ σμ∂μ, σ0 ¼ 1 is an identity matrix,
σ1;2;3 are Pauli matrices. Note that Ā must be a Hermitian
matrix by construction. According to Ref. [49], detΨ ¼ 0
for the Majorana and Weyl fermions as well as for the flag-
dipole spinors, whereas detΨ ≠ 0 for electrons or posi-
trons. Thus, in the latter case, the vector potential may be
expressed as a function of the state

ceĀ ¼ ðicℏ∂̄Ψσ3 −mc2Ψ̄†ÞΨ−1: ð2Þ
A crucial insight is the spinor factorization for electrons or
positrons: Ψ ¼ ffiffiffi

ρ
p

L, where ρ is a non-negative scalar
function modulating the probability density [55] and L is an
invertible matrix representing a Lorentz group element
[44–46].
Considering that a member L of the special Lorentz

group [44–46] is composed of spatial rotations R, a boost
B, and a transformation of internal degrees of freedom
generated by the Yvon-Takabayashi angle β [56,57], the
state can be factorized as [43–46]

Ψ ¼ ffiffiffi
ρ

p
BReiβ=2: ð3Þ

The boost B is parametrized by the velocity components
cu ¼ cðu1; u2; u3Þ (bold symbols denote three dimensional
vectors throughout),

B ¼ BðuÞ ¼ uμσμ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ u0Þ

p ; ð4Þ

with u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
, whereas, the spatial rotations are

parametrized by the angles θ ¼ ðθ1; θ2; θ3Þ,

R ¼ RðθÞ ¼ exp ð−iθkσk=2Þ: ð5Þ

Note that the density ρ, velocity u, rotation angle θ, and
Yvon-Takabayashi angle β are in general functions of space
and time.
RDI is performed in the following way: Spacetime

functions ρ, u, θ, and β are initially selected to describe
a desired dynamics of the Dirac state Ψ. The constructed
factorization (3) is substituted in Eq. (2) to obtain the vector
potential in the matrix form Ā.
If Ā is not Hermitian, the proposed dynamics is not

reachable with physical fields, and the parametrization ρ, u,
θ, and β needs to be modified.
If Ā is Hermitian, then the procedure is completed: The

obtained vector potential Aμ ¼ TrðĀσμÞ=2 enables us to
recover the electromagnetic fields Fμν ¼ cð∂μAν − ∂νAμÞ
and the source Jν ¼ ∂μFμν=ðε0cÞ generating them.
Provided the current Jν, the obtained fields Fμν necessarily
satisfy Maxwell’s equations. Note that Jν differs from the
current JμD ¼ TrðΨΨ†σμÞ ¼ ψ†γ0γμψ emanating from the
Dirac equation.
RDI is a trial-and-error procedure to find a suitable para-

metrization ρ, u, θ, β of the desired dynamics to yield a pair
Aμ, Ψ analytically satisfying the Dirac equation. In a general
case, the obtained Aμ may have a complicated temporal and
special profile hard to implement experimentally.
Furthermore, RDI has a very general foundation, which

is applicable to interactions beyond electromagnetic, e.g.,
nonlinear Dirac equations and scalar interactions coupling
through the mass (mc2 → mc2 þ V) as shown below. The
inversion procedures in Refs. [26,58] can be viewed as
specialized cases of RDI.
Dispersionless rotation.—We now find an electromag-

netic field that moves a Gaussian wave packet along a
circular trajectory in the x-y plane without distortion. Since
the center of the wave packet should follow the trajectory
rðtÞ ¼ r0ðcosωt; sinωt; 0Þ, the desired state evolution is

Ψ ¼ e−
eB0
4ℏ ½ðx−r0 cosωtÞ2þðy−r0 sinωtÞ2�BðuÞ; ð6Þ

where u ¼ _r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð_r=cÞ2

p
and the values of r0 and ωmust

be selected such that r0ω < c to avoid superluminal propa-
gation.According toRDI, thevector potential generating the
dynamics consists of a constant homogeneous magnetic
fieldB0 perpendicular to a planar electric field with a spatial
and temporal profile. However, for the frequency
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ℏω0 ¼ mc2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ2 þ 2eB0c2ℏ

q
; ð7Þ

the electric field acquires a fixed spatial configuration
rotating in time. This expression for ω0 can be regarded
as the cyclotron frequency corrected for quantumeffects (see
Sec. III of Ref. [54]).
In Fig. 1, the crossed circles represent the homogeneous

magnetic field perpendicular to the plane, and the electric
field at the initial time t ¼ 0 is displayed as blue arrows in
the x-y plane. According to Sec. III of the Supple-
mental Material [54], these electromagnetic fields satisfy
Maxwell’s equations with an electric current but without
free charges. The black diffused circle (centered at
x ¼ 2 μm and y ¼ 0) depicts the initial Gaussian
[Eq. (6)] state whose shape is preserved during the rotation
along the gray circular arrow.
The nonrelativistic limit c → ∞ of the driving controls

consist of the homogeneous magnetic fieldB0 and the circu-
larly polarized electric field −½r0ω=e�½(eB0 þmωÞ cosωt;
ðeB0 þmωÞ sinωt). This setup can be shown to preserve
the Gaussian shape within the Schrödinger equation.
As shown in Sec. III of the Supplemental Material [54],

the magnetic field is unaltered in the classical limit ℏ → 0;
whereas, the vector norm difference between the exact
electric field E and its classical limit reads

jE − lim
ℏ→0

Ej ¼ γr0ω3

e
ℏ
2c2

; ð8Þ

where γ ¼ ½1 − ðr0ω=cÞ2�−1=2 is the Lorentz factor. This
reveals that quantum effects are enhanced by relativistic
dynamics. The spatial inhomogeneity in the exact electric

field depicted in Fig. 1 is due to spin-orbit coupling, which is
simultaneously a relativistic and quantum effect. Note that
this dynamics can be observed at experimentally available
values of B0 ¼ 0.35 T and jEj ∼ 0.3 V=m employed in
Fig. 1. In such a regime, the synchrotron radiation energy
loss per cycle is infinitesimally (i.e., 11 orders ofmagnitude)
smaller than the electron’s kinetic energy. Therefore, the
obtained solutions satisfy the physicality criterion.
Dispersionless translation.—We now apply RDI to

achieve a spatial translation of a wave packet without
changing its initial shape. For example, consider the trans-
lation along the y axis with the trajectory YðtÞ. Calculating
the proper velocity u from rðtÞ ¼ (0; YðtÞ; 0), we apply
RDI to the dynamics Ψ ¼ e−ðeB0x2=4ℏÞgðt; yÞBðuÞ. It turns
out that physical fields exist only if gðt; yÞ ¼ G(y − YðtÞ)=ffiffiffiffiffiffiffiffiffiffi
u0ðtÞ

p
for an arbitrary function GðyÞ. In particular, the

translation of the Gaussian

Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffi
u0ðtÞ

p exp

�
−
eB0fx2 þ ½y − YðtÞ�2g

4ℏ

�
BðuÞ ð9Þ

results in the electromagnetic field composed of a time
dependent homogeneous magnetic field and an electric
field with temporal and spatial dependence given in
Sec. IV of Ref. [54]. For the specific trajectory YðtÞ ¼
ðL=2Þf1þ sin½πðt − T=2Þ=T�g for 0 ≤ t ≤ T, Fig. 2 dis-
plays two snapshots of the electric field at the beginning of
motion [Fig. 2(a)] and at the middle [Fig. 2(b)].
In the nonrelativistic limit c → ∞ the driving control is

made of a constant magnetic field B0 along z and a time-
dependent electric field exclusively directed along the
trajectory as dictated by Newton’s law eE2 ¼ mY 00ðtÞ.

FIG. 1. Dispersionless rotation. The black diffused circle
represents the electron cloud [Eq. (6)] rotating along the circle
with frequency ω without changing its shape. This dynamics is
achieved by a combination of a rotating electric field with a fixed
spatial configuration (blue arrows) and a homogeneous magnetic
field B0 perpendicular to the plane (crossed red circles). The
values of the parameters are r0 ¼ 2 μm, B0 ¼ 0.35 T, and ω ¼
−61.55 ns−1 obeying Eq. (7).

FIG. 2. Dispersionless translation of an electron. Time snap-
shots of the state evolution [Eq. (9)] (a) at the beginning of the
translation t ¼ 0 ps and (b) at t ¼ 0.505 ns. The electromagnetic
field in the Dirac equation performing this translation consists of
the time-dependent homogeneous magnetic field perpendicular to
the plane represented by red crossed circles while the electric
field is displayed by blue arrows. The parameters in Eq. (9) are
L ¼ 10 μm, T ¼ 1 ns, and B0 ¼ 1 T.
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As elaborated in Sec. IV of the Supplemental Material
[54], the classical limit ℏ → 0 affects neither the magnetic
field nor the electric field along the direction of motion.
However, the exact component of the electric field
perpendicular to the direction of motion can be written as

eE1 ¼ ðlim
ℏ→0

eE1Þ −
ℏ
2c2

d
dt

ðγŸÞ; ð10Þ

where γ ¼ ½1 − ð _Y=cÞ2�−1=2 is the Lorentz factor. This
quantum correction resembles the Abraham-Lorentz force
describing the interaction of a charged particle with its own
electromagnetic field. Similar to the dispersionless rotation
discussed above, quantum effects are enhanced by the
relativistic dynamics. The counterintuitive temporal and
spatial structure of the control shown in Fig. 2(b) is a
manifestation of strong relativistic spin effects even at weak
electric (jEj ∼ 106 V=m) and magnetic (B0 ∼ 1 T) fields. In
this case, the bremsstrahlung energy loss is negligible
compare to the electron’s kinetic energy.
Integrable three dimensional solutions.—Having dem-

onstrated the RDI’s ability to synthesize dynamics in two
spatial dimensions, we now turn to a challenging three
dimensional case. For the following confined stationary
state

Ψ ¼ ei arcsin½f0ðzÞ�=2e−
eB0ðx2þy2Þ

4ℏ −mcfðzÞ=ℏe−iϵtσ3=ℏ; ð11Þ
RDI uncovers the underlying constant homogeneous mag-
netic field B0 along the z direction and the static electric
potential

eA0 ¼
2mc½f0ðzÞ2 − 1� − ℏf00ðzÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0ðzÞ2

p ;

where the energy of the state (11) is set to ϵ ¼ 0, and fðzÞ is
an arbitrary real function. The obtained potential has no
nonrelativistic limit.
A noteworthy feature of the state (11) is the

spatial dependence of the Yvon-Takabayashi angle
β ¼ arcsin f0ðzÞ, which is a signature of antiparticles
represented by negative energy components in a wave
packet (see, e.g., p. 275 of Ref. [43]). The values of β lie
between −π and þπ, where particles (i.e., positive energy)
and antiparticles are associated with β ¼ 0 and β ¼ �π,
respectively. From the point of view of Lorentz trans-
formations, the Yvon-Takabayashi angle is a degree of
freedom corresponding to the CPT conjugation [49] that
includes the time inversion t → −t; hence,β is a parameter in
the special Lorentz group not available in the restricted
Lorentz group. Moreover, this degree of freedom is absent
from the nonrelativistic Pauli-Schrödinger theory. Since
fðzÞ controls the density of the state in Eq. (11), the tighter
the confinement along the z axis, the higher the contribution
of antiparticles.
In the particular case of fðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ z2

p
, where ξ

determines the density spreading in z, the confining static

electric potential is the sum of soft-core Coulomb and short
range potentials

eA0 ¼ −
ξmcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ z2

p −
ξℏ

2ðξ2 þ z2Þ : ð12Þ

In Sec. V of Ref. [54], the space and time dependent
electromagnetic fields are obtained by RDI to yield the
dispersionless rotation of the state (11).
Exact solutions beyond electromagnetic interactions.—

RDI is not restricted to the electromagnetic interactions.
The Dirac equation describing the scalar field V coupled
to the mass is cγμp̂μψ ¼ ðmc2 þ VÞψ . This equation
describes a Fermion in gravitational fields [59], topological
materials [60], and quark models [61,62]. Another gener-
alization of the Dirac equation involves nonlinear
interactions [63,64], which can also be used to model
Bose-Einstein condensates [65].
Let us consider the following nonlinear interaction with

unspecified V

cγμp̂μψ ¼ ðmc2 þ V þ κjψ j2Þψ : ð13Þ

Applying RDI to the following state

Ψ ¼ eiπ=4e−mcz=ℏe−mcz2=ðξℏÞe−iϵt=ℏσ3 ; ð14Þ

we find the scalar interaction V ¼ 2mc2z=ξ −
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mc=πξℏÞp
e−mcð2zþξÞ2=ð2ξℏÞ by demanding the absence

of electromagnetic fields. Note that the state ψ is confined
in the potential V unbounded from above and below and,
even more surprisingly, in the presence of an additional
repulsive force emanating from the nonlinear term. This is
not possible in the nonrelativistic limit. Another example is
presented in Sec. VI of the Supplemental Material [54].
These cases extend a rather short list of analytic solutions of
the Dirac equation with scalar interaction [66–68]. Further
explorations reveal that RDI becomes more flexible by
utilizing both scalar and electromagnetic interactions, open-
ing new possibilities for controlling quantum dynamics.
Outlook.—We have developed RDI, a new framework

for analytically constructing electromagnetic fields con-
trolling the dynamics of the Dirac equation. RDI has also
been shown to be a flexible tool for discovering novel exact
solutions. In particular, we have shown how relativistic
coherent states could be constructed experimentally. A
scalar interaction coupled to the mass has been incorpo-
rated into RDI. This opens up prospects for quantum
technologies in new realms of physics and may further
expand the scope of control landscape analysis [69].
Since RDI relies on the matrix representation of the

dynamical group generated by an equation of motion, the
developed methodology may also be adaptable to other
dynamical equations [70]. In a similar fashion, RDI may be
used to yield exact solutions for non-Abelian fermions in
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the standard model [71] as well as curved spaces [72,73]
that are currently intractable.
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