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We present a free-space interferometer to observe two-particle interference of a pair of atoms with
entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical
instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our
recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely
mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a
test of a Bell inequality on momentum observables.
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A key element of the second quantum revolution [1,2] is
entanglement [3]. Its extraordinary character comes from the
fact that themany-bodywave function of entangled particles
can only be described in a configuration space associated
with the tensor product of the configuration spaces of the
individual particles. When one insists on describing it in our
ordinary space-time, one has to face the problem of non-
locality [4–6]. This is clearly illustrated by the violation of
Bell’s inequalities [7], which apply to any system that can be
described in the spirit of the local realist worldview of
Einstein, in which physical reality lies in our ordinary space-
time [8].
While the violation of Bell’s inequalities stems from two-

particle interferences observed with entangled pairs, the
converse is not true: not all phenomena associated with
two-particle interference can lead to a violation of Bell’s
inequalities. This is, for instance, the case of the Hanbury
Brown–Twiss effect for thermal bosons [9,10], or the Hong-
Ou-Mandel effect [11]: the quantum description appeals to
two-particle interference but no nonlocality is involved. This
is because the latter effects involve only two modes for two
indistinguishable particles [12],while a configuration leading
to the violation of Bell’s inequalities requires four modes that
can be made to interfere two by two in different places [13].
Ever more ideal experimental tests of Bell’s inequalities

have been performed with low energy photons, internal
states of trapped ions and nitrogen-vacancy centers (see
references in Refs. [16,17]). But we know of no experi-
ments on two-particle interference in four modes associated
with the motional degrees of freedom (position or momen-
tum) of massive particles, and in a configuration permitting
a Bell inequality test [18]. Such tests involving mechanical
observables are desirable, in particular, because they may
allow one to touch upon the interface between quantum
mechanics and gravitation [20].

In this Letter, we present a two-particle interferometer
for momentum entangled atoms and report on an initial
implementation. To understand the experiment, consider an
entangled state consisting of a pair of atoms in a super-
position of distinct momentum modes labeled by �p
and �p0:

FIG. 1. Diagram of a two-particle, four-mode interferometer.
An atom pair in the entangled momentum state (1) is emitted at
time t ¼ 0. Using Bragg diffraction on optical lattices, the four
input modes are then deflected at time t1, and mixed two by two
at time t2 ¼ 2t1 on two independent splitters A and B, with
phases ϕA and ϕB. The interference is read out by detecting the
atoms in the output modes A�, B�, and measuring the proba-
bilities of joint detection PðA�; B�Þ. The Bragg deflector and
splitters differ from their optical analogs, because rather than
reversing the incident momentum, they translate the momentum
by a reciprocal lattice vector �ℏkl. The dashed lines show the
Hong-Ou-Mandel configuration.
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jΨi ¼ 1
ffiffiffi

2
p ðjp;−pi þ jp0;−p0iÞ: ð1Þ

This superposition can be probed with the interferometer
shown in Fig. 1. An analogous interferometer for photons
was proposed in Ref. [21], implemented in Ref. [22], and
resulted in aBell inequality violation. Similar configurations
for atoms were also analyzed in Refs. [23,24]. Although our
results do not yet prove that we have an entangled state, they
do exclude the possibility of a statistical mixture.
The input modes p and -p0 of our interferometer are

deflected and mixed on the 50∶50 splitter A. Similarly, the
input modesp0 and -p are deflected andmixed on the 50∶50
splitterB. The deflection andmixing are realizedwith Bragg
diffraction on optical lattices. The deflecting lattice is
common to the four input modes and is applied at time
t1. The splitting lattices A and B are applied at time t2 ¼ 2t1
(the time origin is set at the instant of pair emission). The
four output modes of the interferometer, A� and B�, can be
written in terms of the four input modes [25]

jAþi ¼
−1
ffiffiffi

2
p ðe−iðϕA−ϕDÞjpi þ ie−iϕD j − p0iÞ; ð2Þ

jA−i ¼
−1
ffiffiffi

2
p ðieiϕD jpi þ eiðϕA−ϕDÞj − p0iÞ; ð3Þ

jBþi ¼
−1
ffiffiffi

2
p ðe−iðϕB−ϕDÞjp0i þ ie−iϕD j − piÞ; ð4Þ

jB−i ¼
−1
ffiffiffi

2
p ðieiϕD jp0i þ eiðϕB−ϕDÞj − piÞ: ð5Þ

Here, the phases ϕD, ϕA, and ϕB are the phase differences
between the laser beams forming the deflecting lattice (ϕD)
and the splitting lattices (ϕA and ϕB); they can, in principle,
be separately controlled. In the above equations we have
omitted overall phase factors due to propagation.
Inverting equations (2)–(5), one readily obtains the

expression of the entangled state (1) at the output of the
interferometer, which solely depends on ϕA and ϕB:

jΨouti¼
1

2
ffiffiffi

2
p ½−iðeiϕA þeiϕBÞjAþ;Bþi

þðeiðϕA−ϕBÞ−1ÞjAþ;B−iþðe−iðϕA−ϕBÞ−1ÞjA−;Bþi
− iðe−iϕA þe−iϕBÞjA−;B−i�: ð6Þ

The probabilities of joint detection in the output modes are
given by the squared modulus of the complex amplitudes of
the corresponding pair states,

PðAþ; BþÞ ¼ PðA−; B−Þ ¼
1

2
cos2½ðϕA − ϕBÞ=2�; ð7Þ

PðAþ; B−Þ ¼ PðA−; BþÞ ¼
1

2
sin2½ðϕA − ϕBÞ=2�; ð8Þ

while the probabilities of single detection are all equal to
1=2. The entangled nature of the initial state is manifest in
the oscillation of the joint detection probabilities as a
function of the phase difference ðϕA − ϕBÞ. If rather, we
had initially a statistical mixture of the pair states jp;−pi
and jp0;−p0i, there would be no modulation and the
probabilities of joint detection would all be equal to 1=4.
The four joint detection probabilities can also be combined
in a single correlation coefficient,

E ¼ PðAþ; BþÞ þ PðA−; B−Þ
− PðAþ; B−Þ − PðA−; BþÞ ð9Þ

¼ V cosðϕA − ϕBÞ: ð10Þ

The visibility V is equal to unity for the input state (1), but it
may be reduced in a real experiment due, for example, to
decoherence, or the presence of additional pairs. In the case
of a statistical mixture, the correlation coefficient would be
equal to zero. Of course, a Bell inequality test remains
possible provided V > 1=

ffiffiffi

2
p

[26].
We now come to our experimental realization. A gaseous

Bose-Einstein condensate (BEC) containing 7 × 104

Helium-4 atoms in the metastable 2 3S1, mJ ¼ 1 electronic
state is confined in an ellipsoidal optical trap with its long
axis along the vertical (z) direction. The emission of atom
pairs occurs in the presence of a vertical, moving optical
lattice formed by the interference of two laser beams with
slightly different frequencies [25]. It results from the
scattering of two atoms from the BEC and can be thought
of as a spontaneous, degenerate four-wave mixing process
[27]. The lattice is switched on and off adiabatically in
100 μs, and ismaintained at a constant depth for 600 μs. The
lattice hold time is tuned to produce a peak atom pair density
in velocity space of about 3 × 10−3 detected pairs per
ðmm=sÞ3. The optical trap is switched off abruptly as soon
as the lattice depth is returned to zero. The atoms are then
transferred to the magnetically insensitivemJ ¼ 0 statewith
a two-photon Raman transition and fall freely under the sole
influence of gravity. They end their fall on a microchannel
plate detector located 46 cmbelow the position of the optical
trap [28]. The detector records the impact of each atom with
an efficiency ∼25%. We store the arrival times and hori-
zontal positions (x-y plane), and reconstruct the initial three-
dimensional velocity of every detected atom.
In Fig. 2, we show the initial velocity distribution of the

emitted atom pairs in the y-z plane. Here, and in the rest of
the Letter, velocities are expressed in the center-of-mass
reference frame of the free-falling pairs. The distribution is
bimodal, and symmetric under rotation about the z axis,
reflecting the one-dimensional character of the pair emis-
sion. We do observe, however, a slight asymmetry in the
height of the two maxima. We attribute this asymmetry
to momentum-dependent losses occurring during the
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short time when the emitted atoms spatially overlap with
the BEC.
The pairwise emission process is characterized by the

normalized cross-correlation

gð2Þðvþz ; v−z Þ ¼
hnðvþz Þnðv−z Þi
hnðvþz Þihnðv−z Þi

; ð11Þ

where nðv�z Þ represents the number of atoms with a
velocity vþz > 0, or v−z < 0, along the z axis and 0 along
the x and y axes. Experimentally, we measure this corre-
lation by counting the number of detected atoms inside two
small integration volumes in velocity space [25], and
averaging their product over many realizations (as denoted
by h·i). The correlation obtained in the experiment is
displayed in Fig. 3. A two-particle correlation centered
around vþz ¼ −v−z ≃ 25 mm=s is clearly visible, and con-
firms that atoms are indeed emitted in pairs with opposite
velocities. Because the pair emission fulfills the quasimo-
mentum conservation strictly, but the energy conservation
only loosely [27], our source emits several pairs of modes,
as shown by the correlation peak which is elongated along
the line vþz ¼ −v−z [25].
If the pair production process is coherent, emitted pairs

will be in a superposition of several pair states, each with
well defined velocities. In other words, our source of atom
pairs should produce pairs of entangled atoms. By filtering
the velocities at the detector according to mvþz ¼ p or p0,
andmv−z ¼ −p or −p0, wherem is the mass of the atom, we
therefore expect to obtain a Bell state of the form (1),
expressed in the center-of-mass reference frame of the pairs.
The next step is to observe an interference between the two

components of the superposition state with the interferom-
eter in Fig. 1. This is realized using Bragg diffraction of the
atoms on a second optical lattice oriented along the z axis,
distinct from the lattice driving the pair emission. This Bragg
lattice is pulsed first for 100 μs to realize the Bragg deflector
(π pulse), and then for 50 μs to realize the Bragg splitters
(π=2 pulse). During thewhole time, the frequency difference
between the laser beams forming the lattice is chirped to
compensate for the atoms’ free fall. The Bragg resonance is
met when v�z ¼ �25 mm=s but the finite pulse duration
broadens the Bragg energy condition such that all mode
pairs ðp;−p0Þ, or ð−p; p0Þ, produced in the experiment are
coupled with almost the same strength if they fulfill the
Bragg momentum condition

pþ p0 ¼ ℏkl; ð12Þ

where kl ¼ m=ℏ × 50 mm=s is the lattice reciprocal vector.
This has two practical consequences. First, a single Bragg
lattice simultaneously realizes the deflection, or the mixing,
of the two pairs of modes ðp;−p0Þ and ð−p; p0Þ, in contrast
with the configuration shown in Fig. 1, where two inde-
pendent splitters are shown. Second, since by construction
the interferometer is closed for any pair of modes satisfying
Eq. (12), the same sequence of two successive Bragg lattices
realizes several interferometers simultaneously.
We apply the deflecting pulse right after the transfer to

the mJ ¼ 0 state, at t1 ¼ 1100 μs, where the time origin is

FIG. 2. Initial velocity distribution of the emitted atom pairs in
the y-z plane. The color scale represents the total number of
atoms detected over 1169 repetitions of the experiment inside an
integration volume of 9.2 × 2.4 × 0.9 ðmm=sÞ3 [25]. The veloc-
ities are defined with respect to the center-of-mass velocity of the
atom pairs, which was measured to be 0, 0, and 94 mm=s along
the x, y, and z directions, respectively.

FIG. 3. Normalized cross-correlation gð2Þðvþz ; v−z Þ. The veloc-
ities are measured along the z axis and relative to the center-of-
mass velocity of the atom pairs. A sliding average was performed
to reduce the statistical noise. The correlation peak is elongated
along the antidiagonal because the source can emit in several
pairs of modes. The width of the correlation peak along the
diagonal corresponds to the diffraction limit imposed by the
spatial extent of the source. The white squares show the size and
position in the plane ðvþz ; v−z Þ of the integration volumes used to
obtain the points in Fig. 4 for the set of modes 1.
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set at the instant when the optical lattice driving the pair
emission is switched on, and t1 is the beginning of the
pulse. To close the interferometer, the time t2 for the
splitting pulse is determined experimentally. This is
achieved by performing a Hong-Ou-Mandel experiment
[29]; that is, we vary the time at which the splitting pulse is
applied and measure the probability of joint detection at
velocities v�z ¼ �25 mm=s (dashed lines in Fig. 1). The
interferometer is closed at the Hong-Ou-Mandel dip, that is
when the joint detection probability is minimum. In our
experiment, this occurs when the Bragg splitting pulse
starts at t2 ¼ 1950 μs [25].
Ideally, one would vary the phase difference ðϕA − ϕBÞ

in a controlled manner to observe the modulation predicted
in Eq. (10). This is not possible with the setup described
here because the two splitters are realized with a single
Bragg lattice. Active control of the phase difference
could be achieved using independent Bragg lattices for
the splitters A and B, and we intend to implement this
procedure in the future. However, we still have a way to
probe different relative phases in the current setup by
filtering modes for which the Bragg energy condition is not
exactly satisfied, which adds a velocity-dependent contri-
bution to ðϕA − ϕBÞ [25]. We therefore obtain different
relative phases by filtering different output momenta.
In our experiment, the multiplexed character of the

interferometer allows us to select three sets of mode pairs
ðp;−p0Þ, and ð−p; p0Þ, for which the interferometer is
closed with different relative phases ðϕA − ϕBÞ. A simple
model for the Bragg diffraction [25] indicates that the
relative phases for these three sets span an interval of about
100°. For each set we measure the joint detection proba-
bilities in the output modes using small integration volumes
in velocity space [25]. The white squares in Fig. 3 show the
corresponding areas in the ðvþz ; v−z Þ plane for one of the
sets. The size of the integration volumes is a compromise
between two opposing constraints: maximizing the signal-
to-noise ratio and minimizing the variations across the
volume of the phase imprinted upon diffraction. With our
settings [25], the average population in one integration
volume is 0.2 atoms per repetition (corrected for the 25%
detection efficiency) and the phase varies by up to 50°.
Figure 4 displays the result of our measurements on each

set. The upper two graphs show the four joint detection
probabilities. As expected from Eqs. (7) and (8), the
values of PðAþ; BþÞ and PðA−; B−Þ on the one hand,
and PðAþ; B−Þ and PðA−; BþÞ on the other, appear to be
correlated. Note that, for each set, the sum of all four joint
detection probabilities is equal to unity by construction.
The lower graph shows the correlation coefficient E defined
in Eq. (10). We observe that, for at least one set of
modes, this coefficient takes a nonzero value (set 3 gives
E ¼ 0.51� 0.20). We have also used our data to verify
the zero level of E: By combining the modes analyzed in
Fig. 4 in a way that avoids two-particle interferences by

construction, we can build 18 sets of modes that should
exhibit a zero correlation coefficient [25]. For those
reference sets, we find indeed E ¼ 0.00 with a statistical
uncertainty of 0.03 (gray line in the lower graph of Fig. 4).
Our results thus rule out the possibility of a completely

mixed state at the input of the interferometer. To make a
claim about the presence of entanglement, we would need
to observe the modulation of E when we vary the phase
difference ðϕA − ϕBÞ. This is best achieved by introducing
separate Bragg splitters, and performing a correlation
measurement on a single set of momentum modes to
render common any velocity dependent phase. A contrast
of the oscillation in excess of 1=

ffiffiffi

2
p

would permit the
observation of a Bell inequality violation for freely falling
massive particles using their momentum degree of freedom.
Finally, we note that the setup described here can in
principle be adapted to mix the mode p with p0, and -p
with -p0, by changing the reciprocal wave vector of the
Bragg lattices. This variant, where the trajectories of the
two atoms never cross, can also lead to a violation of a Bell
inequality, in a situation where nonlocality is more striking.

FIG. 4. Joint detection probabilities measured at the output of
the four-mode interferometer for three independent sets of
momentum modes ðp;−p0Þ and ð−p; p0Þ. The lower graph
displays the correlation coefficient E. The gray line represents
the zero level of this coefficient, calibrated using different
combinations of the same modes for which no two-particle
interference can occur by construction; the width of the line is
the uncertainty on the zero level. The velocities vþz corresponding
to the modes p are 27, 29, and 31 mm=s for sets 1, 2, and 3,
respectively. The velocities corresponding to p0 can be deduced
from Eq. (12). Averages were taken over 2218 repetitions of the
experiment. Error bars denote the statistical uncertainty and are
obtained by bootstrapping.
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