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We consider the four-point correlator of the stress-energy tensor multiplet in N ¼ 4 super Yang-Mills
theory. In the planar limit and at large ’t Hooft coupling, such a correlator is given by the corresponding
holographic correlation function in IIB supergravity on AdS5 × S5. We consider subleading corrections in
the number of colors, i.e., order 1=N4, at large ’t Hooft coupling. This corresponds to loop corrections to the
supergravity result. Consistency conditions, most notably, crossing symmetry, constrain the form of such
corrections and lead to a complete determination of the spectrum of leading-twist intermediate operators.
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Introduction.—The AdS/CFT correspondence relates
four-dimensional N ¼ 4 Super Yang-Mills (SYM) theory
to type IIB string theory on AdS5 × S5 [1–3]. Even after
20 years of its formulation and in spite of tremendous
progress in many directions, nonprotected quantities have
only been explored in certain corners of the parameter
space. One particularly interesting corner corresponds to
planar SYM theory with large t’Hooft coupling λ ¼ g2YMN,
dual to classical supergravity on the bulk. In this regime,
single-trace chiral primary operators (CPOs) of weight p,
Op map to supergravity fields with mass m2 ¼ pðp − 4Þ,
and their correlation functions can, in principle, be com-
puted by tree-level Witten diagrams on AdS:

hO…Oiconn ∼
1

N2
ðtree-level Witten diagramÞ: ð1Þ

Three-point correlators of arbitrary CPOs, as well as the
four-point correlator of the stress-tensor multiplet, were
computed long ago [4,5]. Recently, an elegant algorithm
based on symmetries and consistency conditions to deter-
mine the four-point correlator of arbitrary CPOs was
proposed in Ref. [6]; see, also, Ref. [7].
In this Letter, we consider subleading corrections in 1=N

to correlators in the large t’ Hooft coupling regime. This
corresponds to quantum corrections on the gravity side.
Although some progress has been made for specific
contributions (see Ref. [8]), loop diagrams in AdS are a
largely unexplored subject, mostly due to technical diffi-
culties that prohibit direct computations. The analytic
bootstrap was initiated in Refs. [9,10] and developed into
a powerful algebraic machinery in Refs. [11–13]. This
algebraic formulation allowed a systematic study of loops
in AdS started in Ref. [14] for sectors of CFTs. In this
Letter, we would like to report the first complete results to
order 1=N4 for a full-fledged CFT,N ¼ 4 SYM theory. We
will focus on the four-point correlator of the lowest

component of the stress-tensor multiplet O2. In the planar
limit and at large ’t Hooft coupling, the intermediate
operators consist of double-trace operators of spin l and
dimension

Δn;l ¼ 4þ 2nþ lþ γð1Þn;l

N2
þ γð2Þn;l

N4
þ � � � ;

where n ¼ 0; 1;…. The leading order correction γð1Þn;l is given
by the supergravity result. In this Letter, we study the
consequences of superconformal symmetry, consistency of
the operator product expansion (OPE), and crossing sym-
metry for the subleading corrections. This analysis is highly
complicated by mixing among double-trace operators.
Namely, there is more than one intermediate operator for a
given twist and spin. From the bulk point of view, this
corresponds to taking into account all Kaluza-Klein (KK)
modes. In order to solve this problem, we study general
correlators hOpOpOqOqi in the supergravity approximation.
This allows us to disentangle the contribution from each KK

mode and apply the methods of Refs. [13,14] to find γð2Þn;l.
In addition, crossing symmetry allows the addition of

solutions with finite support in the spin. From the bulk
perspective, these ambiguities correspond to unknown
coefficients in front of possible counterterms. For the
present case, we expect such extra solutions to be absent
for spin 2 and higher. In this case, for the leading-twist
operators of spin 2 and 4, we obtain

Δ0;2 ¼ 6 −
4

N2
−
45

N4
þ � � � ;

Δ0;4 ¼ 8 −
48

25

1

N2
−
12768

3125

1

N4
þ � � � :

Similar results can be obtained for any spin. In principle,
our algorithm fixes also the OPE coefficients.
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Stress-tensor correlator in N ¼ 4 SYM theory.—In
N ¼ 4 SYM theory, the stress tensor sits in a half
Bogomolny-Prasad-Sommerfeld (BPS) multiplet. The low-
est component of this multiplet is a scalar operator O2 of
dimension two in the [0,2,0] of the R-symmetry group
SUð4Þ. Its four-point correlator reads

hO2ðx1ÞO2ðx2ÞO2ðx3ÞO2ðx4Þi ¼
X
R

GðRÞðu; vÞ
x412x

4
34

;

where the sum runs over representations in the tensor
product ½0; 2; 0� × ½0; 2; 0�, and we have introduced the
standard cross-ratios

u ¼ x212x
2
34

x213x
2
24

; v ¼ x214x
2
23

x213x
2
24

:

Superconformal symmetry allows us to write all contribu-
tions GðRÞðu; vÞ in terms of a single nonprotected function
Gðu; vÞ satisfying the following crossing relation

v2Gðu; vÞ − u2Gðv; uÞ þ 4ðu2 − v2Þ þ 4ðu − vÞ
c

¼ 0;

where c ¼ ½ðN2 − 1Þ=4� is the central charge. See
Refs. [15,16] for a detailed discussion. This function can
be decomposed into the contribution from operators in
(semi) short multiplets and operators in long multiplets

Gðu; vÞ ¼ Gshortðu; vÞ þHðu; vÞ;

where Gshortðu; vÞ is independent of the coupling and can be
found in Ref. [16], while Hðu; vÞ admits a decomposition
in superconformal blocks

Hðu; vÞ ¼
X
τ;l

aτ;luτ=2gτþ4;lðu; vÞ;

where the sum runs over superconformal primary operators
in long multiplets in the singlet of SUð4Þ with twist
(dimension minus the spin) τ and even spin l:aτ;l denotes
the squared OPE coefficients. It is convenient to introduce
cross-ratios ðz; z̄Þwith zz̄ ¼ u, ð1 − zÞð1 − z̄Þ ¼ v. In terms
of these,

gτ;lðz; z̄Þ ¼
zlþ1Fτ

2
þlðzÞFτ−2

2
ðz̄Þ − z̄lþ1Fτ

2
þlðz̄ÞFτ−2

2
ðzÞ

z − z̄
;

where FβðzÞ ¼ 2F1ðβ; β; 2β; zÞ is the standard hypergeo-
metric function. In the strict limit of infinite central charge,
Hðu; vÞ reduces to the generalized free fields result
Hð0Þðu; vÞ, which agrees with the large c result in the
Born approximation (free theory). The intermediate oper-
ators correspond to double-trace operators of twist τn ¼
4þ 2n and OPE coefficients

að0Þn;l ¼ πðlþ 1Þðlþ 2nþ 6ÞΓðnþ 3ÞΓðlþ nþ 4Þ
22lþ4nþ9Γðnþ 5

2
ÞΓðlþ nþ 7

2
Þ :

The four-point correlator admits an expansion around large
central charge c:

Hðu;vÞ ¼Hð0Þðu;vÞ þ 1

c
Hð1Þðu;vÞ þ 1

c2
Hð2Þðu;vÞ þ � � � :

Accordingly,

τn;l ¼ 4þ 2nþ 1

c
γð1Þn;l þ

1

c2
γð2Þn;l þ � � � ;

an;l ¼ að0Þn;l þ
1

c
að1Þn;l þ

1

c2
að2Þn;l þ � � � : ð2Þ

In this Letter, we will focus in the limit of large ’t Hooft
coupling λ. In this regime, there are no new operators
appearing in the OPE at this order, and Hð1Þðu; vÞ can be
computed from the classical supergravity result [6,7]. This
leads to the following correction for the spectrum and OPE
coefficients [11,17,18],

γð1Þn;l ¼ −
κn

ð1þ lÞð6þ lþ 2nÞ ;

að1Þn;l ¼ 1

2
∂nðað0Þn;lγ

ð1Þ
n;lÞ;

where κn ¼ ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ. For a given n
and l there is more than one superconformal primary in the
singlet of SUð4Þ, except for n ¼ 0. The above corrections
should then be interpreted as (weighted) averages. This will
be important below.
From leading to subleading corrections.—Our aim is to

compute γð2Þn;l and að2Þn;l from crossing symmetry. Since
Gshortðu; vÞ receives contributions only up to order 1=c,
the crossing equation for Hð2Þðu; vÞ reads

v2Hð2Þðu; vÞ ¼ u2Hð2Þðv; uÞ: ð3Þ
We will follow the strategy in Ref. [14] and determine the
piece proportional to log2 u inHð2Þðu; vÞ from the CFT data
at order 1=c. By crossing symmetry, this leads to a precise
divergence proportional to log2 v. Matching this divergence

fixes γð2Þn;l and a
ð2Þ
n;l to all orders in 1=l. Plugging Eq. (2) into

the conformal block decomposition and expanding up to
order 1=c2, we find

Hð2Þðu; vÞ ¼
X
n;l

�
að2Þn;l þ

1

2
að0Þn;lγ

ð2Þ
n;l∂n þ

1

2
að1Þn;lγ

ð1Þ
n;l∂n

þ 1

8
að0Þn;lðγð1Þn;lÞ2∂2

n

�
u2þngn;lðu; vÞ; ð4Þ

where gn;lðu; vÞ≡ g
τð0Þn þ4;lðu; vÞ. The piece proportional to

log2 u is
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Hð2Þðu; vÞjlog2 u ¼
X
n;l

1

8
að0Þn;lðγð1Þn;lÞ2u2þngn;lðu; vÞ: ð5Þ

A serious obstacle to compute this is the mixing among
double-trace operators ½O2;O2�n;l; ½O3;O3�n−1;l;…. They
have the same twist and spin at zeroth order and transform
under the same representation of SUð4Þ. Hence, the sum in
Eq. (5) should contain an extra index I, which we leave
implicit, to account for degenerate operators at tree level.
For the same reason, the quantities above should be
interpreted as averages weighted by their respective OPE
coefficient at zeroth order. Therefore, the weighted average

hðγð1Þn;lÞ2i does not follow from the leading order result,
except for n ¼ 0, for which there is a unique state. This
problem can be solved by considering the complete family
of four-point correlators hOpOpOqOqi in the supergravity
approximation. Let us show how this works in detail.
For a given twist τn ¼ 4þ 2n, all double-trace operators

½O2;O2�n; ½O3;O3�n−1; � � � mix, and the eigenfunctions of
the Hamiltonian are certain combinations of those

Σi ¼ α2i ½O2; O2�n þ � � � þ αni ½O2þn; O2þn�0; ð6Þ

where the dependence on the spin is implicit. We will
consider this problem at leading order in 1=c. We choose
the double-trace operators ½Ok;Ok� to be canonically
normalized; hence, the coefficients αpi form an orthonormal
matrix in this basis. In order to solve the mixing problem,
consider the correlators hOpOpOqOqi. At zeroth order, the
operators (6) appear with OPE coefficient

X
i

cppΣi
cqqΣi

¼ ηpηq
X
i

αpi α
q
i ;

where ηp, ηq could also depend on the spin and the twist. At
order 1=c, these operators acquire an anomalous dimension
γi. From the explicit result for the correlator hOpOpOqOqi
in the supergravity approximation, we read off

X
cppΣi

cqqΣi
γi ¼ ηpηq

X
i

αpi α
q
i γi ≡ ηpηqhγipq:

The averages hγipq for a given twist can be conveniently

packed in a mixing matrix MðnÞ. For instance, for n ¼ 1,
after analyzing the correlators with p, q ¼ 2, 3 found in
Ref. [19], we find following mixing matrix,

Mð1Þ ¼ κ1

0
B@

− 1
J2−12 − 6

ðJ2−12Þ
ffiffiffiffiffiffiffiffi
J2−6

p

− 6

ðJ2−12Þ
ffiffiffiffiffiffiffiffi
J2−6

p − J2þ24
J4−18J2þ72

1
CA;

where J2 ¼ ðlþ 4Þðlþ 5Þ for n ¼ 1. We have analyzed
this problem for several values p, q, using the explicit
supergravity results in Refs. [19–21]. The averages hγ2ipq

at order 1=c2 are given by the elements ofMðnÞMðnÞ. We are
interested in hγ2i22. For instance, for the case n ¼ 1, we
obtain

hγ2n¼1;li22 ¼ κ21

�
7

ðJ2 − 12Þ2 þ
1

J2 − 6
−

1

J2 − 12

�
:

In general, we find the following remarkable structure,

hðγð1Þn;lÞ2i¼
κ3nð5þ2nÞ

120(J2−ðnþ2Þðnþ3Þ)2þ
Xnþ2

j¼2

βn;j
J2−jðjþ1Þ ;

ð7Þ

where J2 ¼ ðlþ nþ 3Þðlþ nþ 4Þ. The coefficients βn;j
have been computed explicitly up to twist 10. We will see,
however, that they can be fixed for any value of the twist by
resorting to crossing symmetry.
In order to understand this, we introduce the following

sequence of functions denoted twist conformal blocks
(TCBs):

HðmÞ
n ðz; z̄Þ ¼

X
l

að0Þn;l

J2m
ungn;lðz; z̄Þ:

For instance, the zeroth order correlator can be expressed in
terms of TCB Hð0Þ

n ðz; z̄Þ:

Hð0Þðz; z̄Þ ¼
X
n

Hð0Þ
n ðz; z̄Þ: ð8Þ

The explicit form of (super) conformal blocks leads to the
following structure:

Hð0Þ
n ðz; z̄Þ¼ðzz̄Þτn=2

z− z̄
ðFτþ2

2
ðz̄Þhð0Þn ðzÞ−Fτþ2

2
ðzÞhð0Þn ðz̄ÞÞ: ð9Þ

By plugging this into Eq. (8) and expanding around z ¼ 0,

the functions hð0Þn ðzÞ, hð0Þn ðz̄Þ can be found,

hð0Þn ðzÞ ¼ ρn½2ð3þ nÞz̄2F1(3þ n; 4þ n; 2ð3þ nÞ; z)
þ ð3þ nÞðz̄ − 2Þ2F1(4þ n; 4þ n; 2ð3þ nÞ; z)�;

where ρn ¼ −f½πΓðnþ 3Þ2�=½42nþ5Γðnþ 5
2
ÞΓðnþ 7

2
Þ�g. In

order to find the functions HðmÞ
n ðz; z̄Þ for m ≠ 0, we note

that there exists a quadratic Casimir operator with eigen-
function ungn;lðz; z̄Þ and eigenvalue J2. This implies that

HðmÞ
n ðz; z̄Þ admits the same factorization as in Eq. (9) with

hð0Þn ðzÞ → hðmÞ
n ðzÞ, where the functions hðmÞ

n ðzÞ satisfy a
recursion relation. More precisely, we obtain

Dsuh
ðmþ1Þ
n ðzÞ ¼ hðmÞ

n ðzÞ; Dsu ¼ z−n−3Dznþ3;
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and D ¼ ð1 − zÞz2∂2 − z2∂. This recursion relation

together with hð0Þn ðzÞ allows us to find HðmÞ
n ðz; z̄Þ for the

first few values of m and also as various expansions. The
divergent behavior as z̄ → 1 for m ¼ 2; 3;… will be
important for us. From the explicit answer,

hð0Þn ðz̄Þjdiv ¼
an

ð1 − z̄Þ2 þ
bn

1 − z̄
:

It can be then seen that

hðmÞ
n ðz̄Þ ¼ qðmÞ

n ðz̄Þlog2ð1 − z̄Þ; m ¼ 2; 3;…

with qðmÞ
n ðz̄Þ ∼ ð1 − z̄Þm−2 as z̄ → 1 and

Dsuq
ðmþ1Þ
n ðz̄Þ ¼ qðmÞ

n ðz̄Þ:

The functions qðmÞ
n ðz̄Þ can be build recursively to any

desired order.
Returning to the problem of hðγð1Þn;lÞ2i, we then propose

the following expansion:

hðγð1Þn;lÞ2i ¼
X
m

cnm
J2m

:

This allows us to write the piece proportional to log2 u in
Hð2Þðu; vÞ in terms of TCB and the coefficients cnm.
Furthermore, crossing plus consistency with the conformal
partial wave (CPW) expansion, e.g., absence of log3 v,
fixes the range of m to be m ¼ 2; 3; � � �. From the explicit
expression for TCB found above, we can extract the
contribution proportional to log2 v,

Hð2Þðu; vÞjlog2 u log2 v ¼
1

8

X
m;n

cnm
unþ2

z̄ − z
Fnþ3ðzÞqðmÞ

n ðz̄Þ;

where qðmÞ
n ðz̄Þ is defined above. This contribution should be

crossing symmetric by itself. This imposes a set of linear
constraints on the coefficients cnm. The expansion (7) is
consistent with this set of constraints, and, furthermore, the
constraints fix uniquely the coefficients βn;j for all twists.
Up to twist 10, they agree with the ones found by explicit
computations.
Having found hðγð1Þn;lÞ2i, we now turn into the sums

Snðz; z̄Þ≡
X
l

að0Þn;lðγð1Þn;lÞ2ungn;lðz; z̄Þ: ð10Þ

Given Eq. (7), these sums can be solved as follows.
Denoting by C the quadratic Casimir with eigenfunction
ungn;lðz; z̄Þ and eigenvalue J2, we obtain

(C − jðjþ 1Þ)
�X

l

að0Þn;l

J2 − jðjþ 1Þ u
ngn;lðz; z̄Þ

�

¼ Hð0Þ
n ðz; z̄Þ;

which gives a differential equation for the components of
the sums (10). This can be easily solved case by case. The
sums have the following structure:

Snðz; z̄Þ ¼
un

z − z̄
(Fnþ3ðz̄ÞsnðzÞ − Fnþ3ðzÞsnðz̄Þ): ð11Þ

For instance, for the first case,

s0ðzÞ ¼
48 logð1− zÞ(ðz2− 6zþ 6Þ logð1− zÞ− 3z2þ 6z)

z5
:

Spectrum at order 1=c2.—We will now consider the
crossing equation (3) at order 1=c2. Our strategy will be to
expand it around z ¼ 0, z̄ ¼ 1 and focus in terms propor-
tional to different powers of log z, logð1 − z̄Þ. The log z
dependence in Eq. (4) only arises when the derivative hits
u2þn. On the other hand, the behavior around z̄ ¼ 1 is more
subtle, and one needs to perform the sum over the spin. The
piece proportional to log2 z log2ð1 − z̄Þ has already been
discussed. The relation proportional to log z log2ð1 − z̄Þ
leads to

X
n;l

un
�
1

2
ðað0Þn;lγ

ð2Þ
n;lþað1Þn;lγ

ð1Þ
n;lÞþað0Þn;lðγð1Þn;lÞ2

∂n

4

�
gn;lðz;z̄Þ

þ
X
n

log z̄
4

Snðz;z̄Þjlog2ð1−z̄Þ ¼
1

8

X
n
Snð1− z̄;1−zÞj

logz
:

In this Letter, we will restrict ourselves to corrections to the

spectrum of leading-twist operators γð2Þ0;l. This amounts to
considering the small z limit of the relation above. On the
lhs, only the term n ¼ 0 will survive, while on the rhs, all
terms will contribute in this limit. The sum over derivatives

of conformal blocks with the insertion ðγð1Þn;lÞ2 can be
computed with some effort. This result together with the

derivative relation for að1Þn;l leads to

X
l

1

2
að0Þ0;lγ̂

ð2Þ
0;lg

coll
0;l ðz̄Þþ

∂n

4
(κ2nρnF3þnðz̄Þlogð1− z̄Þ)jn¼0

þ log z̄
4

S0ðz; z̄Þjz0 log2ð1−z̄Þ ¼
1

8

X
n
Snð1− z̄;1−zÞj

z0 logz
;

ð12Þ

where gcoll0;l ðz̄Þ is the small z limit of g0;lðz; z̄Þ and

γ̂ð2Þn;l ¼ γð2Þn;l − 1=2γð1Þn;l∂nγ
ð1Þ
n;l. All terms in the above relation

except the first one are exactly computable. Crossing
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symmetry implies that γ̂ð2Þ0;l should be such that its insertion
produces a log2ð1 − z̄Þ divergence times a fully fixed
expansion in powers of ð1 − z̄Þ. This problem can be
solved by proposing

γ̂ð2Þ0;l ¼
X
m

bm
J2m

:

Hence, the first term in Eq. (12) can be written in terms of

TCB HðmÞ
n ðz; z̄Þ at z ¼ 0. As before, crossing symmetry

plus consistency with the CPW expansion fixes the range
m ¼ 2; 3;…. From the procedure outlined above, one can
compute the contribution proportional to log2ð1 − z̄Þ for

hðmÞ
n ðz̄Þ for m ¼ 2; 3;…. This allows us to determine all

coefficients bm and, hence, γ̂ð2Þ0;l to all orders in 1=l. The
result can be organized as to make manifest the contribution

from each KK mode. We start by representing hðγð1Þn;lÞ2i as
follows:

hðγð1Þn;lÞ2i ¼
X∞
p¼2

αpκ
2
n

(J2 − ðnþ 2Þðnþ 3Þ)2

×
Yp−1

k¼2

ðn − kþ 2Þðnþ kþ 3Þ
(J2 − kðkþ 1Þ) ;

where αp ¼ p2ðp2 − 1Þ=12. Each term inside the sum
represents the contribution from the pth KK mode, or
more precisely, the intermediate double-trace operators

½Op;Op�. We can then compute the contribution to γ̂ð2Þ0;l

from each KK mode. From the bulk point of view, this has
the interpretation of an expansion into KK modes running
along the loop. Following the steps outlined above, we can

compute γ̂ð2Þ0;l to all orders in 1=l. Remarkably, the resulting
series can be resummed exactly. For the massless KK
modes, one obtains

γ̂ð2Þ0;ljp¼2
¼ −

144ð3J4 − 2J2 þ 4Þ
ðJ2 − 6Þ2ðJ2 − 2ÞJ2 :

Taking into account only the massless KK mode should be
equivalent to doing the bulk computation in 5d super-
gravity. In this case, the answer is convergent and finite for
all values of the spin. This is consistent with the fact that 5d
supergravity is free of divergences at one loop. For
p ¼ 3; 4;…, the results have the following structure,

γ̂ð2Þ0;ljp ¼ Pð2pþ6ÞðlÞ
J2ðJ2 − 2ÞðJ2 − 6Þ2 þ

Qðpþ1ÞðJ2Þ
J2 − 6

ψ ð2Þðlþ 1Þ;

where P and Q are polynomials such that this contribution
starts at order J−2p at large J. An important comment is in
order. Even though the contribution of each KK mode leads

to an asymptotic series in 1=J, the sum of all of them leads
to a convergent series. This is in tune with Ref. [22]. Let us
consider the contribution of a generic KK mode for finite or
small values of the spins. The general structure is

γ̂ð2Þ0;ljp ¼ αp
Pð14þ2lÞðpÞ

ðp2 − 4Þðp2 − 1Þp
þ αpðp2 − 4Þðp2 − 1Þp3Qð4þ2lÞðpÞψ ð2ÞðpÞ

for some polynomials P, Q. At large p, we find

γ̂ð2Þ0;ljp ∼
αp

p3þ2l :

Since αp ∼ p4, this implies the sum over p is actually
divergent for spin zero. This agrees with the presence of a
quadratic divergence in the 10d supergravity computation
[23]. For spin 2 and higher, we get a convergent sum. For
instance,

X
p¼3

γ̂ð2Þ0;2jp ¼ −
4523

1680
;

X
p¼3

γ̂ð2Þ0;4jp ¼ −
3832

21875
;

which leads to the results quoted in the introduction.
Similar results are obtained for arbitrary spin [24].
Discussion.—We have reported the first complete results

for the CFT data of unprotected operators in N ¼ 4 SYM
theory to order 1=N4 and at large ’t Hooft coupling. A more
detailed exposition will appear in Ref. [24]. There are
several open questions that would be nice to address.
It would be interesting to compute explicitly γð2Þn;l for

n > 0. Once this is found, it would be interesting to study
its large n behavior and compare it to the expectations from
the bulk perspective. It would be important to understand if
solutions with finite support in the spin are present.
Preliminary results show that crossing symmetry does
not require nonanalytical corrections at finite spin. On
the other hand, crossing symmetry allows the addition of
any of the truncated solutions constructed in Refs. [11,25].
From the bulk perspective, these solutions correspond to
counterterms. The 10d supergravity computation contains a
quadratic divergence proportional to λ1=2R4; see Ref. [26]
Eq. (4.2). This leads to a contribution which becomes large
for large λ but has support only for spin zero. Indeed, this
divergence is visible in our computation when summing
over KK modes. We expect other extra solutions are not
present. Note that this ambiguity is already present at
leading order in 1=c. In this case, all truncated solutions are
forbidden by requiring consistency with the flat space limit;
see, e.g., Ref. [6]. Presumably, consistency with the flat
space amplitude to order 1=c2 will also forbid most extra
solutions. There are several results in the literature

that bound the behavior of γð1Þn;l for large n (see, e.g.,
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Refs. [27–31]), and it would be interesting to extend these
results to the order we are considering.
Leading order corrections in 1=λ are, in principle,

possible to consider. At leading order, they correspond
to the addition of the first truncated solution with a known
coefficient [32]. At order 1=N4, one would have to “square”
the supergravity contribution plus this contribution. Since
the latter is truncated in the spin, the extra sums involved
are very simple. This computation is also expected to lead
to divergences, since the first truncated solution grows
much faster with n than supergravity. One could also
consider the exchange of a finite number of single-trace
operators, combining the results of Ref. [33] with the
methods of this Letter.
It would be interesting to study the full four-point

correlator in spacetime. In this Letter, we have computed
explicitly the piece proportional to log2 u, which should
encode the full physical information about the correlator
[22]. For instance, from this piece, through crossing, the
CFT data follow to all orders in 1=l, and from this, the
four-point correlator can be reconstructed up to pieces
which contribute only for finite values of the spin. It would
be interesting to study this problem in Mellin space. This
would be the first step to extend the results of Ref. [6] to
include loops.
The expansion in 1=N for nonprotected quantities in the

context of AdS/CFT duality is a largely unexplored subject.
Our result opens a window to study this problem system-
atically and quantitatively.
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Note added.—Recently, our paper appeared in arXiv, and
an independent computation was presented [34]. Our
results are in full agreement.
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