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We identify a universal indicator for the impact of coherence on periodically driven quantum devices by
dividing their power output into a classical contribution and one stemming solely from superpositions.
Specializing to Lindblad dynamics and small driving amplitudes, we derive general upper bounds on both
the coherent and the total power of cyclic heat engines. These constraints imply that, for sufficiently slow
driving, coherence inevitably leads to power losses in the linear-response regime. We illustrate our theory
by working out the experimentally relevant example of a single-qubit engine.
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Heat engines are devices that convert thermal energy into
useful work. A Stirling motor, for example, uses the
varying pressure of a periodically heated gas to produce
mechanical motion (Fig. 1). Used by macroscopic engines
for two centuries, this elementary operation principle has
now been implemented on ever-smaller scales. Over the
past decade, a series of experiments has shown that the
working fluid of Stirling-type engines can be reduced to
tiny objects such as a micrometer-sized silicon spring [1] or
a single colloidal particle [2–5]. These efforts recently
culminated in the realization of a single-atom heat engine
[6,7]. Thus, the dimensions of the working fluid were
further decreased by 4 orders of magnitude within only a
few years. In light of this remarkable development, the
challenge of even smaller engines operating on time and
energy scales comparable to Planck’s constant appears
realistic for future experiments.
Quantum engines have access to a nonclassical mecha-

nism of energy conversion that relies on the creation of
coherence in their working fluid [8]; see Fig. 1. How does
this additional freedom affect their performance? Having
triggered substantial research efforts in recent years, this
question constitutes one of the central problems in quantum
thermodynamics; see, for example, Refs. [9–18]. However,
the results now available are inconclusive. In fact, current
evidence suggests that, depending on the specific setup,
coherence can be either conducive [8,11,19–28] or detri-
mental [29–33].
Quantifying the role of coherence for a thermodynamic

process requires a benchmark parameter that is sensitive to
superpositions between the energy levels of the working
medium. For operations involving nonselective measure-
ments, several such figures were recently discussed; see,
e.g., Refs. [34,35]. In this Letter, we put forward a universal
coherence indicator for cyclic machines operating without
external measurements. To this end, we describe the
working fluid as a periodically driven N-level system with

a time-dependent Hamiltonian Ht, which is embedded in a
thermal environment. Provided that this reservoir is large,
the system will settle to a periodic state ϱt after some
transient time. The mean generated power per cycle of
length T is then given by [31]

FIG. 1. Classical and quantum engines. (Upper panel) Macro-
scopic Stirling cycle. In the first stroke, power is extracted by
expanding the hot working fluid. Decreasing the temperature at
constant volume in the second stroke leads to a reduction of
pressure before the gas is compressed again in the third stroke.
The cycle is completed by isochorically returning to the initial
temperature. (Lower panel) Quantum Stirling cycle. The working
fluid consists of a two-level system, whose Bloch vector at
the beginning of each stroke is shown in the four diagrams. The
energy eigenstates lie on the vertical axis and the radius of the
circle indicates the level splitting. Two distinct control operations
are applied during the work strokes: the level splitting is changed
and superpositions are created, i.e., the Bloch vector is rotated
away from the vertical axis. In linear response, the energy content
of these coherences cannot be regained by the controller; it is
dissipated during the thermalization strokes, while the level
population adapts to the temperature of the environment.
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P ¼ −
1

T

Z
T

0

dttrf _Htϱtg: ð1Þ

Using the spectral decomposition

Ht ≡
X
n

En
t jntihntj ð2Þ

of the time-dependent Hamiltonian, this quantity can be
divided into two contributions corresponding to the differ-
ent mechanisms of work extraction illustrated in Fig. 1.
First, the classical power

Pd ≡ −
1

T

Z
T

0

dt
X
n

_En
t hntjϱtjnti ð3Þ

generated by changing the energy levels of the working
fluid depends only on the diagonal elements ϱt with respect
to the instantaneous energy eigenstates. Second, the coher-
ent power

Pc ≡ P − Pd ¼ 1

T

Z
T

0

dt
X
n

h _ntj½Ht; ϱt�jnti ð4Þ

arises from creating superpositions between these states
[36]. Accordingly, Pc vanishes when ϱt commutes with Ht
throughout the cycle or when the eigenvectors of Ht are
time independent.
We note that the separation of the power operator _Ht into

a diagonal and an off-diagonal part has been discussed in
the context of adiabatic processes [37] and for a specific
model of a quantum Otto engine [38]. Here, we obtained
the identifications (3) and (4) without making any assump-
tions on the time scale of the driving, the driving protocol or
the system-reservoir coupling. In fact, they follow directly
from the expression (1) for the total generated power, which
can be regarded as a consequence of the first law applied to
the compound system of working fluid and environment.
Therefore, the coherent power (4) qualifies as a universal
indicator for the impact of coherence on periodic power
generation, which, besides heat engines, could also be
applied to other types of devices such as feedback engines
[12,23,39,40].
As a first key application of this concept, we will explore

how coherence affects the power of slowly driven heat
engines in linear response. Our analysis thereby builds on
the well-established theory of open quantum systems
[41,42] and a recently developed thermodynamic frame-
work describing periodically driven systems [31,43],
which has already proven very useful in the classical realm
[44–47]. To describe a quantumheat engine,we augment the
setup discussed so far with a heat source, which periodically
injects thermal energy into the environment at a rate much
slower than its internal relaxation time. The working fluid
then effectively feels the time-dependent temperature

Tt ≡ T þ fqt ; with fqt ≥ 0: ð5Þ

Work is extracted through a periodic driving field fwt , which
couples linearly to the system degree of freedom Gw. The
Hamiltonian Ht thus assumes the form

Ht ≡H þ fwt Gw: ð6Þ
For uniqueness, the field fwt is chosen to be dimensionless
and with a vanishing average over one period T .
Deriving constraints on the coherent power Pc requires

us to further specify the dynamics of the working fluid. To
this end, we first consider the equilibrium situation, i.e.,
fqt ¼ fwt ¼ 0. Assuming weak system-reservoir coupling
and applying a coarse graining in time to wipe out memory
effects and fast oscillating contributions to the state ϱt then
yields the Markovian master equation

∂tϱt ¼ −
i
ℏ
½H; ϱt� þ Dϱt; ð7Þ

where the dissipator

DX ≡X
σ

γσ
2
ð½VσX; V

†
σ� þ ½Vσ; XV

†
σ�Þ ð8Þ

accounts for the effective influence of the thermal envi-
ronment [41,42,48–50]. Here, ℏ denotes Planck’s constant
and fγσg is a set of positive rates with corresponding
Lindblad operators fVσg. Owing to microreversibility,
these quantities are constrained by the quantum detailed
balance relation, which can be expressed compactly in
terms of the formal identity [48,51]

De−βH ¼ e−βHD†: ð9Þ
Here, β≡ 1=ðkBTÞ, where kB denotes Boltzmann’s con-
stant, and the adjoint dissipator is given by [42]

D†X ≡X
σ

γσ
2
ðV†

σ½X; Vσ� þ ½V†
σ; X�VσÞ: ð10Þ

In the adiabatic regime, where the driving is slow
compared to the coarse-graining time scale used in the
derivation of Eq. (7), finite driving can be included in this
framework by allowing the rates and the Lindblad operators
to be time dependent and replacingH and T withHt and Tt,
respectively, in Eqs. (7)–(10) [41]. Solving the resulting
master equation with time-dependent generator by treating
fqt and fwt as first-order perturbations then yields the
explicit expressions [52]

Pd ≡ −
1

T

Z
T

0

dt
Z

∞

0

dτ _fwt ð _Cdd
τ fwt−τ þ _Cdq

τ fqt−τÞ;

Pc ≡ −
1

T

Z
T

0

dt
Z

∞

0

dτ _fwt _C
cc
τ fwt−τ ð11Þ

for the classical and the coherent power, respectively [53],
in the following notation. We abbreviate with Cab

t the Kubo
correlation function [54]
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Cab
t ≡ ⟪Ĝa

t ; Ĝ
b
0⟫

≡
Z

β

0

dλðhĜa
t e−λHĜ

b
0e

λHi − hĜa
t ihĜb

0iÞ; ð12Þ

where t ≥ 0 and each of the indices a and b can assume the
values d, c, q. Hats indicate Heisenberg-picture operators
satisfying the adjoint master equation [42]

∂tX̂t ¼
i
ℏ
½H; X̂t� þ D†X̂t; with X̂0 ¼ X: ð13Þ

Angular brackets denote the thermal average throughout,
i.e., hXi≡ trfXe−βHg=trfe−βHg. Finally, we have defined
the operatorGq ≡ −H=T and splitGw into a diagonal and a
coherent part,

Gd ≡X
n

jnihnjGwjnihnj and Gc ≡ Gw − Gd; ð14Þ

where the vectors jni correspond to the eigenstates of the
unperturbed Hamiltonian H.
As a first key observation, we note that the expression

(11) for Pc is independent of the temperature profile fqt .
Thus, under linear-response and adiabatic-driving condi-
tions, it is impossible to convert thermal energy provided
by the heat source into positive power output via quantum
coherence; rather, coherent power can be injected into the
system only through mechanical driving. This constraint is
captured quantitatively by the bound

Pc ≤ −
Lc
1Ω2

Ω2 þ Lc
2=L

c
1

Fw ≤ 0; ð15Þ

which is saturated in the limit Ω≡2π=T →0 and, formally,
also for Ω → ∞; for the proof, see the Supplemental
Material [55]. It involves the mean square amplitude Fw ≡
ð1=T Þ R T

0 dtðfwt Þ2 of the driving field, and the Green-
Kubo–type coefficients

Lc
j ≡

Z
∞

0

dt⟪ĜcðjÞ
t ; ĜcðjÞ

0 ⟫ ≥ 0; ð16Þ

where the index j in brackets means a time derivative of
respective order.
The bound (15) can be understood intuitively by iden-

tifying the parameter Lc
2=L

c
1 as an estimator for the

decoherence strength of the reservoir, i.e., the square of
the mean rate, at which its influence destroys coherent
superpositions between the energy levels of the working
fluid. In the incoherent limit Lc

2=L
c
1 ≫ Ω2, the coherent

power can approach zero due to frequent interactions with
the environment constantly forcing the system into a state
that is diagonal in the instantaneous energy eigenbasis. This
behavior resembles the quantum Zeno effect, with the role
of the observer played by the thermal reservoir [42]. If
Lc
2=L

c
1 is comparable to Ω2, coherences are inevitably

established in the working fluid at the price of injected

coherent power. Accordingly, in the extreme case
Lc
2=L

c
1 ≪ Ω2, the upper bound (15) reduces to

Pc ≤ −Lc
1F

w, its minimum with respect to Ω. Since this
physical picture appears to be quite general, we assume that
the coherent power is universally negative in linear
response. It should, however, be noted that Eq. (15) strictly
holds only if the driving is slow enough not to spoil the
validity of the adiabatic master equation leading to Eq. (11).
A quantitative analysis of the rapid-driving regime would
therefore require a different dynamical description of the
working fluid using, for example, the Floquet-Lindblad
approach [56].
The coefficients (16) vanish if and only if Gc ¼ 0, which

means that the control variable Gw commutes with the
unperturbed Hamiltonian H. Thus, according to Eq. (15),
any nonclassical driving will inevitably reduce the net
output P ¼ Pd þ Pc of the engine. In fact, P is subject to
the upper bound

P ≤
Lq
1F

q

4ð1þ ψΩÞ
; with ψΩ ≡ ðLc

1=L
d
1ÞΩ2

Ω2 þ Lc
2=L

c
1

≥ 0; ð17Þ

which is proven in the Supplemental Material [55]. For
a ¼ d and a ¼ q, the protocol-independent parameters La

j ,
which are reminiscent of linear transport coefficients,
are thereby defined analogously to Eq. (16), with Gc

replaced by Gd and Gq, respectively. Furthermore, Fq≡
ð1=T Þ R T

0 dtðfqt − f̄qÞ2, with f̄q ≡ ð1=T Þ R T
0 dtfqt corre-

sponding to the mean square magnitude of the local
temperature variation induced by the heat source.
In the special case of purely coherent driving, Gd ¼ 0,

the coefficient Ld
1 vanishes. The coherence parameter ψΩ,

which provides a measure for the relative strength of
coherent and classical driving, then diverges, and
Eq. (17) reduces to P ≤ 0. Consequently, in line with
our analysis above, no cyclic engine relying only on
coherent work extraction can properly operate in the
linear-response regime. For Gc ¼ 0, i.e., quasiclassical
driving, ψΩ vanishes and the constraint (17) assumes its
weakest form,

P ≤ Lq
1F

q=4: ð18Þ
This bound can be saturated if and only if

Gw ¼ −μH=T and D†H ¼ −λðH − hHiÞ ð19Þ
for some real scalars μ and λ > 0 [55]. Thus, the field fwt
has to couple to the free Hamiltonian H, and the energy
correlations must decay exponentially with rate λ, i.e.,

⟪Ĥt; Ĥ0⟫ ¼ e−λt⟪Ĥ0; Ĥ0⟫: ð20Þ
If these two requirements are fulfilled, the protocol for
optimal power extraction is determined by the condition [55]

2_fwt ¼ λðfqt − f̄qÞ=μ − _fqt =μ; ð21Þ
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which leads to P ¼ Lq
1Fq=4 for any temperature profile fqt

and for sufficiently short operation cycles [57]. Furthermore,
using relation (20), the upper bound (18) can be expressed in
a physically transparent form,

Lq
1 ¼ λ

hH2i − hHi2
kBT3

: ð22Þ

Hence, the strength and the decay rate of the energy
fluctuations in equilibrium essentially determine the maxi-
mum power of a cyclicN-level engine in the linear-response
regime. A similar result was obtained only recently for
classical engines [43,45].
We will now explore the quality of our bounds under

practical conditions. To this end, we consider a two-level
engine with the time-dependent Hamiltonian

Ht ¼
ℏω
2

σz þ
ℏωfwt
2

(rσz þ ð1 − rÞσx): ð23Þ

Here, σx;y;z are the usual Pauli matrices, and the dimension-
less parameter 0 ≤ r ≤ 1 determines the relative weight of
the classical and coherent parts, Gd ¼ rðℏω=2Þσz and
Gc ¼ ð1 − rÞðℏω=2Þσx, of the control variable Gw. The
corresponding equilibrium dissipator (8) involves two
Lindblad operators, V� ¼ ðσx � iσyÞ=2, acting at the rates
γ� ≡ γe∓κ, respectively, where κ ≡ ℏωβ=2. This setup lies
within the range of forthcoming experiments using a
superconducting qubit to realize the system and ultrafast
electron thermometers for calorimetric work measurements
[58–60]. Its coherent and total power are subject to the
bounds

Pc ≤−
ℏωλ
2

r2gψΩFw and P≤
ℏωλ
8

g
1þψΩ

Fq

T2
;

with ψΩ ¼ ð1− rÞ2
r2

sinh2κ
4κ

Ω2

Ω2þω2þ λ2=4
; ð24Þ

g≡ κ= cosh2 κ, and λ≡ 2γ cosh κ, which follow from
Eqs. (15) and (17) [55].
To assess the quality of these constraints, we choose a

temperature profile fqt that mimics the Stirling cycle
illustrated in Fig. 1 and a work protocol satisfying

2_fwt ¼ −Ωðfqt − f̄qÞ=T þ _fqt =T; ð25Þ
both of which are shown in Fig. 2. This choice renders
the amplitude and shape of fwt independent of the cycle
frequency Ω. In Fig. 2, the resulting coherent power is
plotted as a function of Ω=λ for r ¼ 1=2. If the level
splitting ω is significantly smaller than the dissipation rate
λ, it decays monotonically while closely following its upper
bound (24). With an increasing ω, a resonant dip emerges
close to Ω ¼ ω. This feature is not reproduced by our
bound, which is, however, still saturated in the limit
Ω=λ → 0 and, formally, also for Ω=λ → ∞. For r ¼ 1,

the coherent power vanishes and the two conditions (19)
are fulfilled with μ ¼ −T. The total power P plotted in
Fig. 2 then reaches its upper bound (24) atΩ ¼ λ, i.e., when
the work protocol (25) satisfies the maximum-power
condition (21). As r varies from 1 to 0, the total power
decreases more and more due to coherence-induced losses,
and the bound (24) lies well above the actual value of P.
This result underlines our general conclusion that coher-
ence has a purely detrimental effect on the output of cyclic
heat engines operated slowly and in linear response.
In the nonlinear regime, coherence can indeed be

beneficial since strong driving makes it possible to extract
work from superpositions before they are destroyed by
the thermal reservoir. This mechanism is exploited by
continuous quantum engines like the three-level maser
[61,62], which produce purely nonclassical power. It also
underlies the coherence-induced power enhancement
recently observed for stroke engines in the limit of short
cycle times [8]. Capturing this effect quantitatively in terms
of coherent power would require us to further develop our
approach by including higher orders in the driving fields. In
a broader perspective, this path could lead to a universal
classification of features enabling an increase of power

FIG. 2. Single-qubit engine. (Upper panel) The temperature
profile fqt (dashed line) consists of two isothermal steps at
temperatures T þ ΔT and T connected by linear slopes. The
work protocol fwt (solid line) is determined by the condition (25).
(Lower panels) Coherent and total power (solid lines) in units of
P0 ≡ ðℏωλ=2ÞðΔT=TÞ210−2 as functions of the rescaled fre-
quency Ω=λ. The bounds (24) are shown for comparison (dashed
lines). The plots in the left column show that our bounds (15) and
(17) can be practically saturated for ω=λ ≪ 1. For ω=λ > 1,
coherence-induced features (resonant dips) appear in both Pc and
P; see the right column. For all plots, we have set κ ≡ 1.
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through coherence, e.g., squeezed reservoirs [11] or col-
lective behavior [18,27], and features leading to coherence-
induced power losses like quantum friction; the last
phenomenon was observed earlier in various models
describing the working fluid as an interacting spin system
[29,30,38,63,64].
We conclude by stressing that our key expressions (3)

and (4) are valid for an arbitrary driving strength and
speed and for any type of system-reservoir coupling. The
coherent power (4) can therefore be used as a universal
performance benchmark across various different types of
cyclic machines, including rapidly driven [26,65–69] and
strongly coupled [70–75] engines. Finally, it might even be
possible to extend this concept to thermoelectric nano
devices, a second class of quantum engines, which has
recently attracted remarkable interest [76–90]. Eventually,
our approach could thus lead to a comprehensive under-
standing of the role of quantum effects for one of the most
fundamental thermodynamic operations: the conversion of
heat into power.
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