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This Letter discusses topological quantum computation with gapped boundaries of two-dimensional
topological phases. Systematic methods are presented to encode quantum information topologically using
gapped boundaries, and to perform topologically protected operations on this encoding. In particular, we
introduce a new and general computational primitive of topological charge measurement and present a
symmetry-protected implementation of this primitive. Throughout the Letter, a concrete physical example,
the Z3 toric code [DðZ3Þ], is discussed. For this example, we have a qutrit encoding and an abstract
universal gate set. Physically, gapped boundaries of DðZ3Þ can be realized in bilayer fractional quantum
Hall 1=3 systems. If a practical implementation is found for the required topological charge measurement,
these boundaries will give rise to a direct physical realization of a universal quantum computer based on a
purely Abelian topological phase.
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Introduction.—The quantum model of computation
strikes a delicate balance between classical digital and
analog computing models, as its stability lies closer to
digital models, while its computational power is closer to
analog ones. Still, a major obstacle to developing quantum
computers lies in the susceptibility of qubits to decoherence.
One elegant theoretical solution to this problem is topo-
logical quantum computation (TQC) [1–3]. TQC is a
paradigm that information is encoded in topological degrees
of freedom of certain quantum systems, thereby protected
from local decoherence. While the standard implementation
uses (non-Abelian) anyons in topological phases of matter,
recent studies revealed that certain topological phases also
support gapped boundaries. It is hence natural to study TQC
with gapped boundaries [4–7].
Real samples of topological phases of matter such as

fractional quantum Hall liquids and topological insulators
have boundaries, which are usually conducting (gapless)
even though the bulk are insulating (gapped). However,
they can be modified to realize Dijkgraaf-Witten (DW)
gauge theories, which are also given by Kitaev’s quantum
double Hamiltonian [3]. These theories support gapped
boundaries in the sense that the extensions of the
Hamiltonians to spaces (surfaces) with boundaries are still
gapped; the Hamiltonian and algebraic frameworks are
developed in Refs. [6,8]. These frameworks show that a
gapped boundary effectively behaves as a non-Abelian
anyon. However, while the existence of non-Abelian any-
ons is still uncertain, gapped boundaries of Abelian phases
are much more routine and support topologically protected
degeneracies even on the plane.

In this Letter, we apply our theory to a concrete physical
example—the Z3 toric code DðZ3Þ—to obtain a universal
gate set, which is a striking example of the extra computa-
tional power from gapped boundaries. This new direction
opens up new vistas in both the theoretical study and
experimental realization of TQC. We introduce a new
computational primitive—topological charge measurement
(TCM), which extends topological charge projection [4].
We propose a physical realization of symmetry-protected
TCM in a fractional quantum spin Hall state, while leaving
a fully topologically protected one to the future because
which measurement is possible in gauge theory is an open
fundamental question [9].
Our universal gate set forDðZ3Þ is close to experimental

technology in bilayer quantum Hall liquids. If a practical
implementation is found for our TCM primitive, this gate
set is a direct physical realization of a universal quantum
computer.
Realization of Z3 toric code by bilayer ν ¼ 1=3

fractional quantum Hall liquids.—The Z3 toric code
DðZ3Þ can be realized in bilayer fractional quantum
Hall (FQH) systems. Reference [10] considers an elec-
tron-hole bilayer FQH system, with a 1=3 Laughlin state of
opposite chirality in each layer. The topological order in
this system is SUð3Þ1 × SUð3Þ1, which is equivalent to the
Z3 toric code DðZ3Þ. (Together with physical electrons,
SUð3Þ1 is topologically equivalent to a 1=3 Laughlin state.)
Hence, we will recycle many of the results of Ref. [10].
We briefly summarize the basic data for DðZ3Þ.

Mathematically, a topological phase is described by a
modular tensor category (MTC) B [11]. The anyon types
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are eamb, a, b ¼ 0, 1, 2, where e and m are Z3 unit gauge
charge and flux, respectively (so e2 ¼ ē, m2 ¼ m̄). [There
are many terms in the literature referring to the same thing:
a simple quasiparticle, an anyon, or a simple object of
DðGÞ. An anyon type, topological charge, or superselec-
tion sector is an isomorphism class of the above.] The
braiding statistics of the anyons is encoded in the modular
S ¼ ½Sab� and T ¼ ½Tab� matrices [11],

Sab ¼ ω−a2b1−a1b2 ; Tab ¼ ωa1a2δab: ð1Þ

Here, ω ¼ e2πi=3.
Gapped boundaries, degeneracy, and topological

operations.—Let us first review the physics of gapped
boundaries, as they will encode our topological qudits. A
convenient physical description for a gapped boundary type
is the consistent collection of (bosonic) anyons that can
condense to vacuum to the boundary at no energy cost.
Mathematically, this is given by a Lagrangian algebra A in
theMTCB (see Refs. [6,8,12–14] and references therein for
precise definitions), which can be represented as a direct
sum of all condensed anyon types. ForDðZ3Þ, there are two
gapped boundary types: e boundaries and m boundaries,
where e; e2 and m;m2 condense, respectively. The corre-
sponding Lagrangian algebras are 1þ eþ e2 and
1þmþm2. In the bilayer 1=3 Laughlin state description,
the e- and m-boundary types correspond to holes with the
two layers connected via electron pairing (i.e., supercon-
ducting) or tunneling.
Multiple gapped boundaries support a degenerate

ground-state manifold. (The degeneracy is exponentially
protected in all length scales, including distance between
boundaries as well as lengths of the boundaries.) Consider
a closed system with n gapped boundaries (Fig. 1).
References [6,8] show that the ground state of the system
is given by the different ways we can create n anyons out of
vacuum, and condense all of them onto the boundaries as a
fusion tree (Fig. 1). This fusion tree also specifies a choice
of basis states for the ground state manifold. For example, if
we have two e boundaries in a planar DðZ3Þ theory, the
ground state degeneracy is 3, labeled by a1 ¼ c̄, a2 ¼ c,
c ¼ 1; e; ē. We denote the basis elements by jci and encode
our qutrit in this space.

We now discuss the topological operations on gapped
boundaries, which induce unitary transformations in the
degenerate subspace. We focus on the DðZ3Þ example and
leave the general results to the Supplemental Material [15].
Tunnel-a operations.—The first topological operation is

to tunnel an anyon a from one gapped boundary (A1) to
another (A2), where a (ā) condenses on A1 (A2).
Physically, this corresponds to applying the a string
operator [3] along a path γ connecting the two gapped
boundaries. This operation, known as a Wilson line
operator, is denoted by WaðγÞ. For the DðZ3Þ theory, it
can be represented as follows:

WaðγÞjbi ¼ ja × bi: ð2Þ
Expressing WaðγÞ as a matrix that acts on the ground state
subspace, we see that WeðγÞ implements the single-qutrit
Pauli-X gate σx3.
Loop-a operations.—Analogously, one can create a pair

of anyons ā in the bulk, loop one of them around a gapped
boundary, and annihilate the pair. When we loop a
counterclockwise around the boundary, this is known as
the Wilson loop operator WaðαiÞ where αi is the loop
encircling boundary Ai. The Supplemental Material [15]
shows that

Waðα2Þjbi ¼
Sab
db

jbi: ð3Þ

Braiding gapped boundaries.—Another topological
operation is to braid gapped boundaries around each other.
This gives multiple-qudit operations that can produce
entangling gates. Physically, braiding corresponds to mov-
ing gapped boundaries around each other, e.g., by tuning
the Hamiltonian HGB of Refs. [6,8] adiabatically.
We may arbitrarily braid n gapped boundaries with total

charge vacuum around each other to obtain a unitary
transformation on the ground state, so long as we return
each boundary to its original position. Mathematically, this
means that the braiding matrices form a representation of
the (spherical) n-strand pure braid group Pn [16]. They can
be computed using the diagrammatic rules of anyon models
and the basis states of gapped boundaries. For most
purposes of quantum computation, it is sufficient to
consider 2-qudit encodings, where n ¼ 4 (Fig. 2). In
general, one must compute all six generators of P4. As
an example, we derive the formula for the generator σ22 in
the Supplemental Material [15].
Topological charge measurement.—For a DW theory,

the gapped boundary braidings only generate a finite group
[16]. Inspired by the results of Ref. [4], we introduce
topological charge measurement based on the Wilson
operators. Before we discuss the general case, recall that
topological charge projection can detect the total charge
of a collection of quasiparticles inside a certain region,
e.g., by sending probe particle along a path enclosing the
region and performing interferometric measurement. As a

FIG. 1. Ground state for n gapped boundariesAi on a plane and
total charge vacuum. All edges are directed to point downward.
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generalization, we can use similar methods to perform
measurement of topological charge through any loop, not
just contractible ones, possibly on a higher-genus sur-
face [4].
Recall thatDðZ3Þ splits into two theories B ¼ C⊠C̄ with

C ¼ SUð3Þ1 which do not interact in the bulk, but are
“stuck together” at the original boundaries of B. The planar
region Y also splits into two mirror layers, SþðYÞ and
S−ðYÞ, which are completely disjoint in the bulk but “stuck
together” at the boundaries of Y. This way, we can view the
system as a single layer of C on a higher-genus surface.
Similarly, each loop α in Y becomes a loop lα in SþðYÞ or
S−ðYÞ, while an arc γ connecting two boundaries lifts to a
loop lγ going around both layers. Let β be one of these
loops. Figure 3 illustrates this for n ¼ 2.
Define OxðβÞ ¼ WxðαiÞ (tunneling operator in C) if β is

the lifting of the line αi, and OxðβÞ ¼ Wxx̄ðγiÞ (loop
operator in B) if β is the lifting of the loop γi. By
Ref. [4], the projection measuring topological charge a
through β can be expressed as

PðaÞ
β ¼

X
x∈C

S0aS�xaOxðβÞ: ð4Þ

The sum runs over the anyon labels x of C, and Sab is the
modular S matrix of C. The Wilson operators WxðαiÞ and
Wxx̄ðγiÞ are computed using the formulas (2) and (3) with
the data of C and B, respectively. As shown in [4],
topological charge projections generate all mapping class

group representations VCðYÞ of a closed surface Y from the
anyon theory C.
For our purpose, we generalize these projections to

TCMs which are the complements of topological charge
projections (the more general definition is in the
Supplemental Material [15]). Specifically, given an anyon
label a and the lifting β of a Wilson line or loop as above,

we consider the projection 1 − PðaÞ
β . Physically, this can be

implemented by adding such nonlocal operators to the
effective Hamiltonian of the ground state subspace,

H0 ¼ −tWaðβÞ þ H:c: ð5Þ

Here, t is the (complex) tunneling amplitude. This effective
Hamiltonian then projects the system to the desired
state space.
Universal gate set withDðZ3Þ gapped boundaries.—Let

us now specialize to DðZ3Þ, or the bilayer ν ¼ 1=3 FQH.
Reference [10] proposed to use superconducting
(1þ eþ ē) boundaries to encode qutrits, so the readout
can be done with electric charge measurement. We follow
this scheme, and occasionally use the other (m-boundary)
encoding as an ancilla.
By Ref. [17], one universal qutrit gate set is the

metaplectic gate set: 1. The single-qutrit Hadamard gate
H3. 2. The two-qutrit entangling gate SUM3. 3. The single-
qutrit generalized phase gate Q3 ¼ diagð1; 1;ωÞ. 4. Any
nontrivial single-qutrit classical (i.e., Clifford) gate not
equal to H2

3. 5. A projection M of a state in the qutrit
space C3 to Spanfj0ig and its orthogonal complement
Spanfj1i; j2ig, so that the resulting state is coherent if
projected into Spanfj1i; j2ig.
We now discuss how each of these gates can be

implemented from the aforementioned topological oper-
ations. First, we discuss the implementation of 1–4: 1.H3 is
equal to the modular S matrix of the anyon theory SUð3Þ1,
so it is in the representation of mapping class group of the
torus and can be implemented via a sequence of topological
charge projections. 2. For SUM3, consider braiding one
hole of a e-boundary target qutrit with another hole of a
m-boundary control qutrit (i.e., apply σ22, as shown in
Fig. 4). This gives

FIG. 2. Braiding of two gapped boundaries (σ22). Solid lines
indicate tunneling operators from the basis vectors (i.e., not
motion of the holes), while dotted lines indicate how the holes
move in the braiding process.

FIG. 3. Topological charge projection (n ¼ 2). FIG. 4. Braid for the ∧ σz3 gate.
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σ22 ¼ diagð1; 1; 1; 1;ω;ω2; 1;ω2;ωÞ ¼∧ σz3: ð6Þ

Because we implemented the Hadamard and ∧ σz3 ¼
ðI3 ⊗ H3ÞSUM3ðI3 ⊗ H3Þ, conjugating the target qutrit
by Hadamards gives the SUM gate between a 1þ eþ ē
qutrit and a 1þmþ m̄ qutrit. We then have a short circuit
(Fig. 5) using these SUM gates to implement a SUM gate
between two 1þ eþ ē qutrits. After the circuit, one must
interpret the measurement outcome of the ancilla qutrit. If
we measure jmji, we must apply ðσx3Þj to the control-out
[e.g., by applying WejðγÞ]. 3. By Ref. [4], topological
charge projections can be used to implement diagð1;ω;ωÞ,
the Dehn twist of the SUð3Þ1 theory. We follow this by a
generalized Pauli-Z gate to obtain Q3. 4. By Eq. (2), the
tunneling operator WeðγÞ implements the single-qutrit
Pauli-X gate σx3.
The implementation of the coherent projection M is the

most challenging part of the proposal. First, we relate M to
a TCM. A planar DðZ3Þ with two 1þ eþ ē boundaries
can be viewed as double layers of SUð3Þ1 connected via
two handles; the curve γ connecting the two boundaries lifts
to a loop in this perspective. By Eq. (4), projecting to
vacuum within this loop gives

Pð1Þ
γ ¼ 1

3

2
64
1 1 1

1 1 1

1 1 1

3
75: ð7Þ

The eigenvalues and eigenspaces of Pð1Þ
γ are

λ¼0∶Span

8><
>:

2
64
1

ω

ω̄

3
75;

2
64
1

ω̄

ω

3
75

9>=
>;

λ¼1∶Span

8><
>:

2
64
1

1

1

3
75

9>=
>;
: ð8Þ

One then obtains the coherent projection M by con-

jugating the orthogonal projector 1 − Pð1Þ
γ with the

Hadamard, i.e., H†
3ð1 − Pð1Þ

γ ÞH3. While Pð1Þ
γ is a topologi-

cal charge projection as in Ref. [4], 1 − Pð1Þ
γ is a gen-

eral TCM.
We now have universal quantum computation using

gapped boundaries of DðZ3Þ. This is very significant, as
we achieve universal quantum computation using only an

Abelian topological quantum field theory [all anyon braid-
ings in DðZ3Þ are projectively trivial], without using state
injection, as in Ref. [7].
Symmetry-protected realization.—In physical realiza-

tions such as bilayer FQH, the TCM can be implemented
as follows: we tune the system such that the quasiparticle
tunneling along the desired loop is enhanced, so that the
system has the projected charge state as the ground state.
This can be achieved by, e.g., using gate configurations to
diminish the energy gap. We consider 1 − PðaÞ

γ as a concrete
example. The desired term in the Hamiltonian we would
like to create is H0 ¼ −tWγðeÞ þ H:c:, where t is the
(complex) tunneling amplitude and WγðeÞ is the Wilson
tunneling operator. Wγ has eigenvalues 1;ω; ω̄. The coher-
ent projection requires that the eigenvalues of H0 split into
two sets, one of which has two degenerate eigenvalues.
This puts a stringent constraint on the complex phase of t.
The simplest choice is that t is real.
The requirement that t is real is beyond topological

protection. Physically, such condition can be met in a
fractional quantum spin Hall state [18,19], an interacting
analog of quantum spin Hall insulator enriched by time-
reversal symmetry. Topologically, this phase is identical to
bilayer ν ¼ 1=3 Laughlin state, if the layer index is actually
identified as the electron spin up and down. In such a state,
the time-reversal symmetry exchanges the two layers. The
e anyon in this physical realization is the bound state of the
spin up or down quasiholes. Therefore, the tunneling
amplitude of e has to be real since e is time-reversal
invariant, and the TCM is symmetry protected.
Conclusions.—Gapped boundaries provide the missing

π=8-gate for a universal gate set from the doubled Ising
theory [4]. In this Letter, we use our symmetry-protected
TCM to obtain a coherent projection, which augments the
topological operations from Ref. [10] for the Z3 toric code
to a universal gate set for a qutrit computational model. The
Z3 toric code is realized by bilayer fractional quantum Hall
liquids [10], whereas it is not yet clear how to physically
realize the doubled Ising theory. The challenge for a
realistic implementation of our universal gate set now lies
in a practical realization of the coherent projection.
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