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The proof of the long-standing conjecture is presented that Markovian quantum master equations are at
odds with quantum thermodynamics under conventional assumptions of fluctuation-dissipation theorems
(implying a translation invariant dissipation). Specifically, except for identified systems, persistent system-
bath correlations of at least one kind, spatial or temporal, are obligatory for thermalization. A systematic
procedure is proposed to construct translation invariant bath models producing steady states that well
approximate thermal states. A quantum optical scheme for the laboratory assessment of the developed
procedure is outlined.
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Introduction.—A stochastic interaction of a quantum
system with a bath brings up the term F̂fr in the relations
for time-dependent expectation values of system momenta
p̂ ¼ fp̂1;…; p̂Ng and positions x̂ ¼ fx̂1;…; x̂Ng:

d
dt

hp̂ni ¼ −
� ∂
∂x̂n Uðx̂Þ

�
þ hF̂fr

n i; ð1aÞ

d
dt

hx̂ni ¼
1

mn
hp̂ni; ð1bÞ

where Uðx̂Þ is a potential energy operator and mk are
effective masses. In this Letter, we study the case where
F̂fr ¼ F̂frðp̂Þ is position independent. In this form, Eqs. (1)
apply to many quantum phenomena including the transla-
tional motion of an excited atom in vacuum [1], Brownian
motion in a dilute background gas [2], light-driven processes
in semiconductor, nanoplasmonic, and optomechanical sys-
tems [3–5], superconducting currents [6], quantum ratchets
[7], energy transport in low-dimensional systems [8],
dynamics of chemical reactions [9], two-dimensional vibra-
tional spectroscopy and NMR signals [10,11], as well as
more exotic entirely quantum dissipative effects [12,13].
The term F̂frðp̂Þ in Eqs. (1) admits a simple classical

interpretation as friction acting on effective particles
moving in a potential UðxÞ. Such classical dynamics are
described by the familiar Langevin, Drude, and Fokker-
Plank models when the system-bath interactions are treated
as (i) memoryless (Markovian) and (ii) translation invariant
(position-independent). However, we will show that these
two assumptions are at odds with quantum thermodynam-
ics. Specifically, we will prove a long-standing no-go
conjecture that completely positive [14] Markovian
translation-invariant quantum dynamics obeying Eqs. (1)
cannot thermalize.
The no-go conjecture was demonstrated by Lindblad as

early as in 1976 [16] for a quantum harmonic oscillator
with a Gaussian damping [17]. Subsequently, his particular

result was extended to a general quantum system under the
weight of mounting numerical evidence, however, without
proof. The no-go conjecture is de facto incorporated in
all popular models such as the Redfield theory [21], the
Gaussian phase space ansatz of Yan and Mukamel [22], the
master equations of Agarwal [23], Caldeira-Leggett [24],
Hu-Paz-Zhang [25], and Louisell-Lax [26], and the semi-
group theory of Lindblad [27] along with specialized
extensions in different areas of physics and chemistry.
These models break either one of assumptions (i) and (ii) or
the complete positivity of quantum evolution (see
Refs. [15,28,29] for detailed reviews; note Errata [30]).
This circumstance is a persistent source of controversies
(see, e.g., the discussions [31–33] of original works
[34,35]). The matters were further complicated by the
discovery that the free Brownian motion Uðx̂Þ ¼ 0 circum-
vents the conjecture [36] (we will identify the full scope of
possible exceptions below).
The no-go result challenges studies of the long-time

dynamics of open systems. On the one hand, the model’s
thermodynamic consistency is undermined by assumptions
(i) and (ii). On other hand, the same assumptions open
opportunities to simulate large systems that are otherwise
beyond the reach. Specifically, the abandonment of
Markovianity entails a substantial overhead to store and
process the evolution history. The value of assumption
(ii) can be clarified by the following example. Consider the
rethermalization of a harmonic oscillator coupled to a
bath (represented by a collection of harmonic oscillators)
after displacement from equilibrium by, e.g., an added
external field, a varied system-bath coupling, or inter-
actions between parts of a compound system. To account
for such a displacement without assumption (ii), one needs
to self-consistently identify the equilibrium position for
each bath oscillator, rethermalize the bath, and modify the
system-bath couplings accordingly. In practice, this pro-
cedure is intractable without gross approximations that lead
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to either numerical instabilities or physical inaccuracies.
Choosing among a polaron-transformation-based method,
Redfield, and Förster (hopping) models of quantum transfer
epitomizes this dilemma [37].
Remarkably, assumption (ii) enables us to model the

displaced state equilibrium by simply adjusting the potential
energy Û. Figure 1(a) shows that without this assumption
the potential adjustment yields steady state ρ̂st significantly
different from the canonical equilibrium ρ̂thθ ∝ e−ðĤ=θÞ,
where θ ¼ kBT and Ĥ is the system Hamiltonian.
Motivated by these arguments, we propose in this Letter a

general recipe to construct approximately thermalizable bath
models under assumptions (i) and (ii). Figure 1 illustrates
this recipe in application to the above example. The resulting
mismatch between ρ̂st and ρ̂thθ is small, especially at high
temperatures and in the weak system-bath coupling limit.
(The calculations details will be explained below.)
It will be shown elsewhere that the proposed recipe

is capable of accurately accounting for electronic and spin
degrees of freedom. We found it helpful in reservoir
engineering and optimal control problems. Moreover, the
resulting bath models are realizable in the laboratory and
can be used for coupling atoms and molecules nonreci-
procally [38]. However, the scope of our recipe is limited
by the applicability of assumptions (i) and (ii) and, there-
fore, cannot encompass strongly correlated systems (as in
the case of Anderson localization [39]).
The key results.—Starting by formalizing the problem,

we write the general master equation that accounts for
memoryless system-bath interactions and ensures positivity
of the system density matrix ρ̂ at all times [27]:

∂
∂t ρ̂ ¼ L½ρ̂�; L ¼ L0 þ Lrel; ð2aÞ

L0½⊙�¼ i
ℏ
½⊙;Ĥ�; Ĥ¼Hðp̂; x̂Þ¼

XN
n¼1

p̂2
n

2mn
þUðx̂Þ; ð2bÞ

Lrel¼
XK
k¼1

Llbd
L̂k
; Llbd

L̂
½ρ̂�¼def L̂ ρ̂L̂†−

1

2
ðL̂†L̂ ρ̂þρ̂L†L̂Þ; ð2cÞ

where ⊙ is the substitution symbol defined, e.g., in
Ref. [40]. The superoperator Lrel accounts for system-bath
couplings responsible for the friction term F̂fr in Eq. (1a)
and depends on a set of generally non-Hermitian operators
L̂k. Based on theorems by Holevo [41,42], Vacchini
[43–45] has identified the following criterion of transla-
tional invariance for the Lrel:
Lemma 1: (The justification is in Sec. I of the

Supplemental Material [18].) Any translationally invariant
superoperator Lrel of the Lindblad form (2c) can be
represented as

Lrel ¼
X
k

Llbd
Âk

þ Laux with ð3aÞ

Âk¼defe−iκkx̂ ~fkðp̂Þ; Laux¼−i½μauxx̂þfauxðp̂Þ;⊙�; ð3bÞ
where κk and μaux are N-dimensional real vectors, ~fk are
complex-valued functions, and faux is real valued. [The
Gaussian dissipators Llbd

μkx̂þ ~fGk ðp̂Þ
ðμk ∈ RNÞ can be reduced

to the form Eq. (3) as a limiting case κk → 0, as shown in
Sec. I of Ref. [18]. The generalized unitary drift term Laux
accounts for ambiguity of the separation of the quantum
Liouvillian L in Eq. (2a) into Hamiltonian and relaxation
parts.] The converse holds as well.
The primary findings of this work are summarized in the

following two no-go theorems.
No-go theorem 1: Let jΨ0i be the ground state (or any

other eigenstate of Ĥ), such that hΨ0jp̂jΨ0i ¼ 0, and which
momentum-space wave functions Ψ0ðpÞ ¼ hpjΨ0i is non-
zero almost everywhere, except for some isolated points.
Then, no translationally invariant Markovian process of
form (2) and (3) can steer the system to jΨ0i.
The idea of the proof, whose details are given in Sec. II

of the Supplemental Material [18], is to show that the
state ρ̂0 ¼ jΨ0ihΨ0j can be the fixed point of superoperator
etL only if Lrel ≡ 0. First, note that the linearity and
translation invariance of the dissipator (3) imply that
Lrel½

R
gðx0Þe−ði=ℏÞx0p̂ρ̂0eði=ℏÞx0p̂dNx0� ¼ 0 for any function

gðx0Þ. This equation can be equivalently rewritten as

Lrel½Ψ0ðp̂Þgðx̂ÞΨ0ðp̂Þ†� ¼ 0; ð4Þ

using the identities e−ði=ℏÞx0p̂jΨ0i ¼
ffiffiffiffiffiffiffiffi
2πℏ

p
Ψ0ðp̂Þjx0i andR

gðx0Þjx0ihx0jdNx0 ¼ gðx̂Þ, where jx0i is the eigenstate of
position operator x̂kjx0i ¼ x0kjx0i. Let us choose gðxÞ ¼
e−iλx, where λ is an arbitrary real vector, and move to the
right the x̂-dependent terms in the left-hand side of Eq. (4)

using the commutation relations e−i ~λ x̂p̂ ¼ ðp̂þ ℏ~λÞe−i ~λ x̂

(a) (b)

FIG. 1. The errors (expressed in the terms of Bures distance DB

between the thermal state ρ̂thθ and its approximation ρ̂st) in
modeling thermal states of a 1D quantum harmonic oscillator
in the displaced equilibrium configurations [due to a change
Uðx̂Þ → Uðx̂ − Δx0Þ in the potential energy] using the conven-
tional quantum optical master equation (dashed lines) and the
proposed translation-invariant dissipation model defined by
Eqs. (2), (3), and (11) (solid lines). (a) The error dependence
on displacement Δx0 for several temperatures θ. (b) The error
dependence on temperature θ for different values of κ (in units
of κ0 ¼ ℏ−1β−

1
2).
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with ~λ ¼ λ, �κk. This rearrangement brings Eq. (4) to the
form ~Gλðp̂Þe−iλx̂ ¼ 0 (note that all the operators of form
e�i ~κk x̂ expectedly cancel out owing to translation invariance
of Lrel). The last equality can be satisfied only if the
function ~GλðpÞ vanishes identically for all p and λ.
However, careful inspection of Sec. II of Ref. [18] shows
that the latter happens only if Lrel ¼ 0.
The statement of the first no-go theorem can be

strengthened for a special class of quantum systems. Let
Bðp; λÞ be the Blokhintsev function [46], which is related to
Wigner quasiprobability distribution Wðp; xÞ as

Bðp; λÞ ¼
Z

∞

−∞
…

Z
∞

−∞
eiλxWðp; xÞdNx: ð5Þ

No-go theorem 2: Suppose that the Blokhintsev func-
tion Bθðp; λÞ of the thermal state ρ̂thθ ∝ e−ðĤ=θÞ character-
ized by temperature kBT ¼ θ is such that

∀ p; λ∶ Bθðp;λÞ > 0; Bθðp;−λÞ ¼ Bθðp; λÞ; ð6aÞ

∀ p ≠ 0; λ ≠ 0∶ Bθðp; λÞ < Bθð0; 0Þ: ð6bÞ

Then, no translationally invariant Markovian process (2)
and (3) can asymptotically steer the system to ρ̂thθ .
The proof of this theorem is given in Sec. III of the

Supplemental Material [18] and generally follows the same
logic as the outlined proof of the first no-go theorem. Using
Eq. (5) and the familiar formula for the thermal state
Wigner function [47], it is easy to check that the criteria (6)
are satisfied for any θ in the case of a quadratic potential U.
This means that the Lindblad’s original conclusion on
inability to thermalize the damped harmonic oscillator
using the Gaussian friction term Lrel ¼ Llbd

μx̂þηp̂ is equally
valid for all Markovian translationally invariant dissipators.
Corollary 2.1: No translationally invariant Markovian

process of form (2) and (3) can steer the quantum harmonic
oscillator into a thermal state of form ρ̂thθ ∝ e−ðĤ=θÞ.
Practical implications of the no-go theorems.—In

classical thermodynamics, the bath is understood as a
constant-temperature heat tank “unaware” of a system of
interest. However, the no-go theorems indicate that
system-bath correlations of at least one kind—spatial or
temporal—become obligatory for thermalization once
quantum mechanical effects are taken into account.
These correlations break the bath translation invariance
or Markovianity assumptions, respectively.
Nevertheless, in the view of computational advantages

outlined above, it is desirable to incorporate these assump-
tions into the master equations (2) and (3). Now we are
going to introduce the recipe to construct such models with
a minimal error in the thermal state. In order to proceed,
note that in the limit ðℏκkÞ2 ≪ hp̂2i, Eqs. (2) and (3) reduce
to the familiar Fokker-Planck equation

∂
∂tϖðpÞ≃ Tr(δðp − p̂ÞL0½ρ̂�)þ

X
n;l

∂2Dn;lðpÞϖðpÞ
∂pn∂pl

−
X
n

∂Ffr
n ðpÞϖðpÞ
∂pn

ð7Þ

for the momentum probability distribution ϖðpÞ ¼
Tr½δðp − p̂Þρ̂�. The friction forces Ffr in Eq. (7) as well
as Eq. (1a) have the form

Ffrðp̂Þ ¼ −
X
k

ℏκkj ~fkðp̂Þj2; ð8Þ

whereas the momentum-dependent diffusion operator is

Dn;lðp̂Þ ¼
ℏ2

2

X
k

j ~fkðp̂Þj2κk;nκk;l: ð9Þ

Equations (8) and (9) can be satisfied by different sets
of κk and ~fkðpÞ. We will exploit this nonuniqueness to
reduce the system-bath correlation errors. Our strategy is
reminiscent of the familiar way of making density func-
tional calculations practical via error cancellation in
approximated exchange-correlation functionals. We shall
demonstrate the generic procedure by considering a one-
dimensional oscillator with the Hamiltonian Ĥ ¼
ðm=2Þp̂2 þ ðmω2=2Þx̂2 (here the dimension subscript n
is omitted for brevity). Corollary implies that Lrel½ρ̂thθ � ≠ 0

and ρ̂st ≠ ρ̂thθ for any θ, where ρ̂st ¼ ρ̂jt→∞ is the actual fixed
point of the evolution operator etL. However, the net
discrepancies can be reduced by imposing the following
thermal population conserving constraint:

d
dt

he−αĤiθ
����
t¼0

¼ 0;

���� d
2

dt2
he−αĤiθ

����
t¼0

→ min for all α;

ð10Þ
where h⊙iθðtÞ ¼ Trð⊙etL½ρ̂thθ �Þ. This constraint can be
intuitively justified when the characteristic decay rates are
much smaller than the typical transition frequencies, such
that the dissipation can be treated perturbatively. Since the
term Lrel½ρ̂thθ � generates only rapidly oscillating off-diagonal
elements in the basis of Ĥ, Eq. (10) ensures that the first-
order perturbation vanishes on average for the exact thermal
state: limt→∞ð1=tÞ

R
t
0 e

τL0Lreleðt−τÞL0 ½ρ̂thθ �dτ ¼ 0.
In the case of the driftless dissipation Laux ¼ 0, Eq. (10)

is satisfied by the following functions ~fkðpÞ in Eq. (3):

~fkðpÞ ¼ ckepβℏλk ; λk ¼ κk tanh
�
ℏω
4θ

�
; ð11Þ

where β ¼ ðmℏωÞ−1 and the constants ck should be chosen
to satisfy Eq. (8). The corresponding dissipator (3) repro-
duces the familiar microphysical model of quantum
Brownian motion [see, e.g., Eq. (16) in Ref. [36]] in the
limit κ → 0, ω → 0. Furthermore, the resulting dynamics
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tends to decrease (increase) the average system energy
hĤiθ if its initial temperature θ0 is higher (lower) than θ:

d
dt

hĤiθ0 jt¼0 ¼
c2k
ω

~γenk ðθ0; θÞðhĤiθ − hĤiθ0 Þjt¼0; ð12Þ

where ~γenk ðθ0;θÞ¼2ωβℏ2κkλkexpðβℏ2λ2kcothðℏω=2θ0ÞÞ>0.
Equation (12) suggests that ρ̂st is close to ρ̂thθ . This

conclusion is supported by the simulations presented in
Fig. 2(a) for the isotropic dissipator Lrel ¼ Bκ; ~fiso,

Bκ; ~fiso¼
defLlbd

Âþ þ Llbd
Â− ; Â� ¼ e∓iκx̂ ~fisoð�p̂Þ: ð13Þ

One can see that the high-quality thermalization is readily
achieved by tuning the free parameters ck and κk even in
the strong dissipation regime.
To understand the result (11), note that the terms

Llbd
Âk

in Eq. (3) represent independent statistical forces

h−ℏκkj ~fkðp̂Þj2i contributing to the net friction hF̂fri. In
classical mechanics, such forces at θ ¼ 0 steer the system
to the state of rest by acting against the particles’ momenta,
hence,

~fkðp̂Þ ¼ 0 when pκk < 0 ðclassical mechanicsÞ: ð14Þ
However, clipping the functions (11) according to Eq. (14)
introduces significant errors, as displayed by dotted
curves in Fig. 2(a). Thus, the “endothermic” tails of
~fkðp̂Þ at pκk > 0 break the thermalization in the classical
case, but reduce errors in the quantum mechanical treat-
ment. To clarify this counterintuitive observation, note that
the physical requirement ðd=dtÞhÔiθ ¼ 0 for any observ-
able Ô in the thermodynamic equilibrium ρ̂st ¼ ρ̂thθ is
violated by the master equations (2) and (3) due to the
no-go theorems, i.e.,

d
dt

hx̂2niθ
����
t¼0

¼ ℏ2
X
k

����� ∂
∂p̂n

~fkðp̂Þ
����
2
�

θ

����
t¼0

> 0; ð15Þ

in the driftless case Laux ¼ 0. The inequality (15) provides
further evidence for the no-go theorems and is the hallmark
of the “position diffusion,” a known artifact in the quantum
theory of Brownian motion [45].
According to Eq. (15), ðd=dtÞhx̂2iθjt¼0 is sensitive to

smoothness of ~fkðpÞ. Specifically, the right-hand side of
Eq. (15) is exploded by any highly oscillatory components
of ~fkðpÞ and diverges if ~fkðpÞ is discontinuous. This
entirely quantum effect is the origin of poor performance
of the clipped solutions (14) seen in Fig. 2(a). Equation (15)
uncovers unavoidable errors in the potential energy.
The optimal solutions (11) enforce error cancellation
ðd=dtÞhp̂2=2miθjt¼0¼−ðd=dtÞhUðx̂Þiθjt¼0 between kinetic
and potential energies leaving the total energy intact
ðd=dtÞhĤiθjt¼0 ¼ 0. In fact, the error cancellation is
achieved with a large class of physically feasible functions

~fkðpÞ that may substantially differ from the solutions (11)
everywhere but the region of high probability density
ϖðpÞ ¼ Tr½δðp̂ − pÞρ̂thθ � (however, note the remark in
Sec. IV of the Supplemental Material [18]). This is
illustrated in Fig. 2(a) by dashed curves overlapping with
solid curves.
The master equations (2) and (3) provide accurate

nonperturbative description of collisions with a background
gas of atoms or photons [5,44,48–50]. Hence, the above
theoretical conclusions can be directly tested in the labo-
ratory using well-developed techniques, e.g., the setup
shown in Fig. 2(b). Here a two-level atom is subject to
two orthogonally polarized counterpropagating monochro-
matic nonsaturating laser fields of the same amplitude E
and frequency ωl. We show in Sec. IVof Ref. [18] that the
translational motion of the atom can be modeled using
Eq. (2) with an isotropic friction term of form Lrel ¼ Bκ;~giso .
Here,

κ¼ωl

c
; ~gisoðpÞ¼ ~c1½~c22þðp− ~c3Þ2�−1

2; ~ck∈R; ð16Þ

and the parameters ~ck can be tuned by E and ωl.
Now we are ready to clarify why the deviations from

canonical equilibrium increase with jκj in Fig. 2(a). The
parameters ℏjκj and ~gisoðpÞ2 in Eq. (16) can be regarded as
the change of atomic momentum after absorption of a
photon and the absorption rate. The case of small ℏjκj ≪ffiffiffiffiffiffiffiffiffi
hp̂2i

p
and large ~gisoðpÞ2 implies tiny and frequent

momentum exchanges subject to the central limit theorem.
The net result is a velocity-dependent radiation pressure
with vanishing fluctuations. The opposite case of large
ℏjκj ≫

ffiffiffiffiffiffiffiffiffi
hp̂2i

p
and small ~gisoðpÞ2 is the strong shot noise

limit, where the stochastic character of light absorption is

(a) (b)

FIG. 2. (a) The accuracy of thermalization of the harmonic
oscillator at θ ¼ 0 by the dissipator Lrel ¼ ΓBκ; ~fiso as a function
of κ and Γ. The solid curves show the Bures distanceDB between
the thermal state ρ̂thθ and its approximation ρ̂st for the case ~fisoðpÞ
defined by Eq. (11) with c ¼ ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~γenð0; 0Þp

. The dotted curves

represent the clipped versions (14) of ~fisoðpÞ. The dashed
curves correspond to the case of functions ~fisoðpÞ approximated
by Eq. (16) with parameters ~ci chosen such that
ðdl=dplÞ½ ~fisoðpÞ − ~gisoðpÞ�jp¼0 ¼ 0 for l ¼ 0, 1, 2. (b) The
Doppler cooling setup to test the model (2), (3) in the laboratory.
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no longer averaged out, notably perturbing the thermal
state. Note that a similar interpretation applies to quantum
statistical forces in Ref. [51].
The dissipative model (2) and (3) with optimized

parameters (11) is further analyzed in Fig. 1 using the
same parameters as in Fig. 2(a). Both Figs. 1 and 2(a)
indicate that thermalization can be modeled for a wide
range of recoil momenta ℏκ ∈ ( − ðℏ ffiffiffi

β
p Þ−1; ðℏ ffiffiffi

β
p Þ−1) and

the higher the temperature, the better the accuracy. Thus,
Eqs. (8) and (9) enable us to simulate a variety of velocity
dependences of friction and diffusion.
Finally, Fig. 1(a) benchmarks such simulations against

the commonly used quantum optical master equation
(QOME) [52] defined by Eq. (2c) with K ¼ 2, L̂1 ¼ffiffiffiffiffiffiffiffiffi
2Γω

p ð1 − e−ðℏω=θÞÞ−1
2â, L̂2 ¼

ffiffiffiffiffiffiffiffiffi
2Γω

p ðeðℏω=θÞ − 1Þ−1
2â†,

where â is the harmonic oscillator annihilation operator.
For a correct comparison, the parameters of both models
are adjusted to ensure identical decay rates in Eq. (12).
Systematic errors in our model and QOME are comparable
for the equilibrium displacements Δx0 ∼ ℏβ−

1
2 at zero

temperature and Δx0 ∼ 0.1ℏβ−
1
2 for θ ∼ ℏω. For low-

frequency molecular vibrational modes (m ∼ 104 atomic
units, ω ∼ 200 cm−1), these shifts are of order 0.4 and
0.04 Å, respectively, which are in the range of typical
molecular geometry changes due to optical excitations or
liquid environments. We found the displacement-indepen-
dent errors in the models (2), (3) to be very important for
quantum control via reservoir engineering. Furthermore,
the same feature can also be exploited for engineering the
mechanical analogs of nonreciprocal optical couplings [53]
and energy-efficient molecular quantum heat machines
[38]. These subjects will be explored in a forthcoming
publication.
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