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We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator
networkswith twopopulations of (at least) two elements using a generalmethodbasedon a delayed interaction
with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based
design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the
method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the
way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
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Phasemodels providemathematical descriptions ofweakly
coupledoscillatory systems:Thestate of eachunit is described
by a single variable, its phase, and the effect of coupling is
determined by the phase velocity as a function of the phase
difference of the coupled elements [1–3]. They capture
collective dynamical phenomena (e.g., synchronization and
dynamical differentiation) of even very large networks of
oscillators, as it was demonstrated with electrochemical [4]
and neural oscillations [5,6], and superconducting Josephson
junctions [7]. Phase-model-based approaches have also been
effective to induce desirable synchronization patterns with
external signals, e.g., with desynchronization, and stable and
itinerant cluster dynamics [8–10].
Many biological systems, however, operate at an

intermediate level of (frequency) synchronization [11].
Collective dynamics where oscillators are only locally
frequency synchronized—commonly know as chimeras—
are striking examples for the rich dynamics that arise even
for identical units [12,13] that are of relevance in applica-
tions [14]. Much theoretical effort has focused on chimeras
in phase oscillator networks. These range from explicit
bifurcation analyses [15] to a mathematically rigorous
notion of a chimera—a weak chimera is characterized by
angular frequency synchronization along trajectories—and
corresponding existence results [16–18]. At the same time,
carefully designed experimentswith chimera dynamics have
only drawn inspiration from the phase oscillator results [19–
22] rather than relate directly to them. Indeed, general
experimental realization conditions for robust chimeras
(as asymptotic dynamics which arise despite the inherent
heterogeneities) are difficult to formulate because of the
complexities of the experimental systems. For example, the
electrochemical chimera system [22] lasted only 100 cycles,
required many connections (at least 20 units with 140
connections) and showed chimera dynamics with unrealis-
tically uniform system with natural frequency differences
less than 0.1%.

In this Letter, we show that very robust chimeras arise in a
small oscillator network of only two populations of two
elements, when the interactions among the elements are
designed in a general way with weak linear and quadratic,
time-delayed interactions. The interactions are based on a
phase model for which we predict the emergence and
bifurcations of weak chimeras. The effective design is
achieved by the generalization of a feedback approach
previously used to induce collective dynamics of globally
coupled networks [8,23,24] to complex network structures.
We verify our approach in numerical simulations of the
Brusselator model and experiments with electrochemical
oscillators to observe weak chimeras in these systems.
Weak chimeras in networks of phase oscillators.—We

consider the dynamics of M ¼ 2 populations of N ¼ 2
phase oscillators where the phase interaction between
oscillators is determined by the coupling function

gðϕÞ ¼ sinðϕ − αÞ þ r sinð2ϕ − 2αÞ ð1Þ
with parameters α, r ∈ R. More precisely, let the phase
θσ;k ∈ T ≔ R=2πZ of oscillator k in population σ ∈ f1; 2g
evolve according to

_θσ;1 ¼ωþ gðθσ;2− θσ;1Þþ ε½gðθκ;1− θσ;1Þþ gðθκ;2− θσ;1Þ�;
ð2aÞ

_θσ;2 ¼ωþ gðθσ;1− θσ;2Þþ ε½gðθκ;1− θσ;2Þþ gðθκ;2− θσ;2Þ�;
ð2bÞ

where κ ¼ 3 − σ, ω ¼ 1 is the intrinsic frequency of each
oscillator [25], and ε is the interpopulation coupling
parameter; see Fig. 1(a) of Supplemental Material [26]
for a sketch of the network topology. If θðtÞ is a trajectory
of (2) with initial condition θð0Þ ¼ θ0, then let θ̂ðtÞ be a
continuous lift of θ to R. With Ωσ;kðTÞ ≔ ð1=TÞθ̂σ;kðTÞ
we have the asymptotic average angular frequency
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Ωσ;k ¼ limT→∞Ωσ;kðTÞ of oscillator ðσ; kÞ. Recall that the
characterizing feature of a weak chimera as a particular
invariant set A ⊂ TMN is frequency synchrony (and lack
thereof): For all trajectories with initial conditions θ0 ∈ A
we have distinct oscillators ðσ; kÞ; ðη; jÞ; ðρ;lÞ such that
Ωσ;k ¼ Ωη;j ≠ Ωρ;l; see [16–18] for a precise definition.
If ε ¼ 0, the populations in (2) are uncoupled, which

gives rise to invariant subspaces. Each population evolves
on T2, and, for a moment, we suppress the population index
σ. The set S ¼ fθ1 ¼ θ2g corresponds to full phase syn-
chrony, and D ¼ fθ1 ¼ θ2 þ πg denotes the splay phase
where oscillators are in antiphase. The asymptotic average
frequencies of the oscillators can be written in terms of the
coupling function g: We have Ωkðθ0Þ¼ωþgð0Þ for θ0 ∈ S
and Ωkðθ0Þ ¼ ωþ gðπÞ for θ0 ∈ D. Moreover, g deter-
mines the stability of S and D. If g has only a single
harmonic, r ¼ 0, then full synchrony S and D exchange
stability at α ¼ � π=2 in a degenerate bifurcation. A second
nontrivial harmonic, r ≠ 0, breaks this degeneracy; that is,
for α ≈ � π=2 there is a branch of stable (relative)
equilibria for r > 0 [24] and a region of bistability between
S and D for r < 0.
For phase shifts α ≈ π=2 and r < 0, the system (2) now

supports weak chimeras for a wide range of parameter
values ε > 0. Such chimeras arise as perturbations ofD × S
[27] for small ε > 0 [16]. For the dynamics (2) the space
TS ≔ T2 × S ¼ fθ2;1 ¼ θ2;2 ≕ ϑg, where the second pop-
ulation is phase synchronized, is dynamically invariant and
its transversal stability is determined by g0ð0Þ [3,17]. The
dynamics on TS are determined by the phase differences
ψk ≔ θ1;k − ϑ, which evolve as

_ψ1 ¼ gðψ2 − ψ1Þ − gð0Þ þ ε½2gð−ψ1Þ − gðψ1Þ − gðψ2Þ�;
ð3aÞ

_ψ2 ¼ gðψ1 − ψ2Þ − gð0Þ þ ε½2gð−ψ2Þ − gðψ1Þ − gðψ2Þ�;
ð3bÞ

in a frame that rotates (not necessarily uniformly) with
the synchronized population θσ;k. The set SS ≔ S × S ¼
fψ1 ¼ ψ2g ⊂ TS is dynamically invariant. Figure 1(a)
shows the stable limit cycle that corresponds to the stable
weak chimera in the full system and in-phase and antiphase
synchronized clusters in the phase plane of (3) for α¼1.57,
r ¼ −0.3, and ε ¼ 0.1. For initial conditions in TS,
trajectories converge either to the weak chimera or to
equilibria on SS; thus, we calculated the size of the basin
of attraction of the weak chimera periodic orbit as the
complement of the basin of attraction BðSSÞ [28]. The
basin of attraction of the stable periodic orbit shrinks as
ε ≥ 0 is increased—shown in Fig. 1(b)—and the periodic
orbit becomes unstable in a pitchfork bifurcation of limit
cycles at ε ≈ 0.64. The unstable limit cycle is ultimately
destroyed at ε ≈ 0.715 in a global bifurcation. The stable
weak chimeras here are robust against small perturbations

of the system (as hyperbolic limit cycles) and, in contrast to
systems where g has only a single harmonic [29], exist for a
wide range of parameters with a relatively large basin of
attraction. This makes them suitable for realization in limit
cycle oscillators through feedback.
Feedback induces weak chimeras in the Brusselator.—

We first illustrate our engineering approach to obtain
weak chimeras in limit cycle oscillator systems using
the Brusselator model, a simple two-variable ordinary
differential equation system that admits a Hopf bifurcation
[30]. For real parameters A and B, define fðx; yÞ ¼
ðB=AÞx2 þ 2Axyþ x2y. Let pσ;kðtÞ be a control signal
for the kth oscillator in population σ ∈ f1; 2g whose
dynamics are given by

_xσ;k¼ðB−1Þxσ;kþA2yσ;kþfðxσ;k;yσ;kÞþKpσ;kðtÞ; ð4aÞ
_yσ;k ¼ −Bxσ;k − A2yσ;k − fðxσ;k; yσ;kÞ; ð4bÞ
where K is the total gain for the control signal that is
applied to the first component. Fix A ¼ 1 and B ¼ 2.3. For
K ¼ 0, each oscillator has a stable limit cycle with angular
speed ωBr ¼ 0.977 and period TBr ¼ 2τBr ¼ 2πω−1

Br .
For appropriately chosen control and sufficiently small

K, the network of Brusselator oscillators has a desired
phase reduction; see also [23]. More precisely, given a
uniformly increasing phase variable _ϕσ;k ¼ 1 on the limit
cycle for K ¼ 0 and a target interaction function gðϕÞ ¼P

l∈Zgl expð−ilϕÞ for the phase dynamics, then the
feedback hðϕÞ¼P

l∈Zhlexpð−ilϕÞ can be obtained from
the phase response curve ZðϕÞ¼P

l∈ZZlexpð−ilϕÞ by
solving

gl ¼ Z−lhl: ð5Þ

FIG. 1. Weak chimeras exist for two coupled populations (2) of
N¼2 oscillators. Panel (a) shows the phase plane of the reduced
system (3) for ε¼0.1 (shading of arrows indicates their norm):
Stable phase synchronized solutions in SS are shown in red, the
stableweak chimera periodic orbit in blue.Unstable periodic orbits
(gray) bound both BðSSÞ (shaded area) and the basin of attraction
of theweak chimera. In panel (b), the shading indicates the fraction
of initial conditions (ψ1ð0Þ;ψ2ð0Þ) that lie inBðSSÞ. Separation of
average angular frequencies (Ω1;k in blue and Ω2;k in red)
characterizes theweak chimeras for (2) with fixed initial condition
(θ1;1ð0Þ; θ1;2ð0Þ; θ2;1ð0Þ; θ2;2ð0Þ) ¼ ð0; π; π=2; π=2þ 0.1Þ. Note
that, while the stable weak chimera exists up to ε ≈ 0.64, this
initial condition leaves its basin of attraction at ε ≈ 0.5.
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For feedback control, the hl may be expressed in terms of
the waveform xðϕÞ ¼ P

l∈Zal expð−ilϕÞ, which yields a
set of equations involving the Fourier coefficients of the
waveform, the phase response curve, and the target
interaction function g.
We realized the network (2)—up to a rescaling of time—

with the feedback signal

pσ;kðtÞ ¼
X

κ;j∈f1;2g
Kκσhðxκ;j(t − τÞ); ð6Þ

where the feedback gains Kκσ ¼ 1 if κ ¼ σ and Kκσ ¼ ε
otherwise determine the network topology and τ is a global
feedback delay. Let x̄κ;j ¼ xκ;j − a0, where a0 is the zeroth
Fourier coefficient of xκ;j as above (similarly, write
ḡ ¼ g − g0). Now for a given coupling function (1) and
second order time-delayed feedback

h(xκ;jðtÞ)¼ k1½x̄κ;jðt− τ1Þ− x̄κ;jðt− τ1− τBrÞ�
þk2½ðx̄κ;jðt− τ2Þ2þ x̄κ;jðt− τ2− τBrÞ2�; ð7Þ

the feedback parameters ks and τs are readily computed [8].
Since the delay τBr is equal to half of the oscillations period,
the linear feedback term will not have a second harmonic
and the quadratic term will not have a first harmonic.
Moreover, each delay effectively acts as a phase shift for the
coupling function (as long as Kτ is small) [8,23]. Thus,
choosing τ1 and τ2 to yield a pure sin interaction for the
first- and second-order feedback and then setting k2=k1 ¼ r
yields the coupling function (1) for α ¼ 0. For α ≠ 0, set the
global delay to τ ¼ ω−1

Br α. This strategy yields a good
approximation gBr of the target interaction function (1) as
shown in Fig. 2(a) [31] without the need for extensive
nonlinear fitting as in previous approaches [8].
Subject to feedback, the network of Brusselator oscillators

(4) gives rise to weak chimeras. Figure 2(b) shows the
evolution of xσ;k and hϕσ;ki—the average of ϕσ;k over one
cycle—for ε ¼ 0.1. The average angular frequencies Ωσ;k

(calculated from the phase ϕσ;k of each oscillator) of the

synchronized and antiphase population are distinct. Stable
weak chimeras exist for a range of coupling parameters ε as
shown in Fig. 2(c), comparable to the predictions obtained
from the phase oscillator dynamics (2). Theweak chimeras are
robust to adding small variations in the oscillators (not shown).
Experimental realization in electrochemical oscillators.—

We built an experimental system with four (two populations
of two) oscillatory chemical reactions that can be coupled
through linear and quadratic feedback with a delay. Each
oscillatory reaction occurs on the surface of a 1.00 mm
diameter nickel wire in 3M sulfuric acid. Because the disk
electrodes are placed far from each other (about 3 mm
spacing) and the potential drop in the electrolyte is very small
(about 0.1 mV), the oscillators do not show synchronization
without the presence of additional coupling means [33].
A multichannel potentiostat interfaced with a real-time
Labview controller sets the potential Vσ;kðtÞ of the wires
individually with respect to a Hg=Hg2SO4=sat K2SO4

reference electrode.The currents Iσ;kðtÞ of the four electrodes
and a Pt-coated Ti electrode are recorded and converted to
electrode potentials Eσ;kðtÞ ¼ Vσ;kðtÞ − Iσ;kðtÞRind, where
Rind ¼ 1 kOhm is an individual resistance attached to each
wire [8]; see Supplemental Material [26] for more details on
the experimental setup. The electrode potential is corrected
for offset, Ēσ;k ¼ Eσ;k − o, where o is a time-averaged
electrode potential. For the feedback, the circuit potentials
of each wire is set to

Vσ;kðtÞ ¼ V0 þ K
X

κ;j∈f1;2g
Kκσh(Ēκ;jðt − τÞ); ð8Þ

where Kκσ determines the network topology, K is the total
feedback gain, τ is the global delay, and

h(Ēκ;jðtÞ)¼ k1½Ēκ;jðt− τ1Þ− Ēκ;jðt− τ1− τExÞ�
þ k2½Ēκ;jðt− τ2Þ2þ Ēκ;jðt− τ2− τExÞ2� ð9Þ

is the feedback as in (7). As above, the delay τEx is set to be
equal to half a period of the uncoupled oscillators: For the

FIG. 2. Network interaction yields weak chimeras in Brusselator models for A ¼ 1 and B ¼ 2.3. Panel (a) shows the waveform x,
phase response curve Z, and the effective interaction function gBr (dotted) on top of the target (1) with α ¼ 0 (solid) for second-order
feedback parameters ðτ1; τ2Þ ¼ 2πω−1

Br ð0.8577; 0.3156Þ and ðk1; k2Þ ¼ ð0.6601;−2.1692Þ. Panel (b) depicts waveforms xσ;k and phase
differences hϕk;σ − ϕ2;2i of a weak chimera for this feedback, ε ¼ 0.1, andK ¼ 0.03: The frequencies of populations 1 (blue) and 2 (red)
are distinct. These weak chimeras exist for a range of ε as shown in panel (c), here K ¼ 0.05. The initial condition was the point with
(θ1;1ð0Þ; θ1;2ð0Þ; θ2;1ð0Þ; θ2;2ð0Þ) ¼ ð0; π; π=2; π=2þ 0.1Þ for the uncoupled system.
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experimental setup with no coupling, K ¼ 0, and potential
set to V0 ¼ 1160 mV, the electrodissolution process is
oscillatory with a natural frequency of about 0.45 Hz.
During the experiment, a 2–3 mHz difference in natural
frequencies between the electrodes was maintained.
Initial trials allows us to determine the feedback param-

eters to get the desired coupling functions (1) using the same
strategy as in the numerical simulations. Employing pure
first- and second-order feedback gains, we set k1 ¼ 0.22,
k2 ¼ 2.0 V−1, and τ1 ¼ τ2 ¼ τ ¼ 0. With these parameters,
we determined the phase interaction function (using a self-
feedback method [24]). Figure 3(a) shows that the exper-
imental phase interaction function gEx approximates the
desired interaction function (1) with r ¼ −0.4 and α ¼ 0
very well. In terms of Fourier coefficients, we obtained

ḡExðϕÞ ¼ −0.012 cosðϕÞ þ 0.051 sinðϕÞ
þ 0.003 cosð2ϕÞ − 0.021 sinð2ϕÞ; ð10Þ

which shows that there are weak cosine and strong first and
second harmonic sinusoidal components with r ¼ −0.41.
Adding a global delay of τ ¼ 0.51 s, the uncoupled pop-
ulations, ε ¼ 0, exhibited bistability between in-phase and
antiphase oscillatory states forK ¼ 0.52 (see Supplemental
Material [26]). This choice of parameters corresponds to a
phase shift ofα ¼ 1.44 in the phasemodel, is expected to fall
within the chimera regime, and was used in all the following
experiments. Before the experiments, the phases of oscil-
lators in populations 1 and 2 were set to anti- and in-phase
configurations, respectively, to provide appropriate initial
conditions for the weak chimera.
We observed weak chimeras in the experimental setup

for a range of coupling parameters ε ≥ 0. First note that, if

there are no interpopulation connections, ε ¼ 0, there is a
very large dynamically induced frequency difference of
about 18 mHz between population 1 in an antiphase and
population 2 in an in-phase configuration; see Figs. 3(c)
and 3(d). When the coupling between the populations was
increased to ε ¼ 0.1, the populations remain approximately
in the anti- and in-phase configurations [see Fig. 3(b)] but
now exhibited oscillations due to the interaction between
populations. Importantly, the two populations exhibited
phase drifting behavior relative to each other; this state thus
represents a weak chimera state. As is shown in Fig. 3(c),
the frequency difference between the populations in the
chimera state is much larger (about 9 times) than the
frequency difference without interpopulation coupling. We
observed a chimera state for a large interpopulation
coupling strength up to ε ¼ 0.5; see Figs. 3(c) and 3(d).
As ε was increased, the amplitude of the phase difference
oscillations of the synchronized population increased. With
strong interpopulation coupling at ε ¼ 0.8, the weak
chimera breaks down and the two populations became
phase locked (see Supplemental Material [26]).
Discussion.—We showed that a simple network of two

populations of two elements, coupled through a linear and
quadratic amplification with a delay of half the period, can
generate very robust chimera patterns with strong phase
slipping behavior between the populations. The induced
chimeras do not rely on amplitude dynamics (e.g., from
chaotic [34] or amplitude [35] clusters). Similar dynamics
are expected with any nonlinear oscillatory system with a
phase interaction function that has strong first harmonic
and weak second harmonic components. While oscillations
very close to a Hopf bifurcation typically have dominant
first harmonics in the interaction functions, second

(a) (b)

(c) (d)

FIG. 3. Experimental weak chi-
mera; V0 ¼ 1160 mV, Rind ≃ 1 kΩ.
(a) Experimentally determined
(points) and desired (line) interaction
function for τ¼ 0, r¼−0.4; K¼0.35.
(b) Phase difference time series of
population 1 (ϕ1;2 − ϕ1;1) and popu-
lation 2 (ϕ2;2 − ϕ2;1) and between
the populations (ϕ2;2 − ϕ1;1) of a
weak chimera; K ¼ 0.52, ε ¼ 0.1.
(c) Differences of frequencies (aver-
aged over populations) between pop-
ulations without coupling, K ¼ 0
(circles) and at various ε values, K ¼
0.52 (squares). (d) The frequencies of
the populations at various ε values
(squares ¼ population 1, circles ¼
population 2) at K ¼ 0.52.
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harmonics arise naturally away from the Hopf bifurcation
point (unless there is some particular symmetry in the
individual dynamics) [36]. Therefore, we expect that
systems in which the oscillations occur through Hopf
bifurcations (e.g., class 2 neurons or resonators [37]) can
exhibit the chimeras. Moreover, interactions between oscil-
lators are often nonlinear in nature; examples include
gating mechanisms that limit the transduction of the
coupling signals, as was demonstrated with glycolytic
oscillations [38] or through synaptic coupling of neurons
[39]. Thus, our results give insights into how chimera
dynamics emerge from the first two orders of the inter-
action or could be induced if these interactions can
be tuned.
Our results directly bridge complex collective dynamics,

such as chimeras, in phase models, and real-world oscil-
lator networks. On the one hand, this approach elucidates
how complex collective dynamics, which arise in phase
oscillator networks, translate into networks of limit cycle
oscillators. On the other hand, we anticipate insights into
the limitations of phase oscillator models to describe
collective dynamics of real-world networks beyond clus-
tering; for example, this should further clarify the need to
include higher-order interaction terms [40–42] in the phase
dynamics as they facilitate spatiotemporal dynamics of
localized synchrony [43].
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