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Thermal fluctuations can lift the degeneracy of a ground state manifold, producing a free-energy
landscape without accidentally degenerate minima. In a process known as order by disorder, a subset of
states incorporating symmetry breaking may be selected. Here, we show that such a free-energy landscape
can be controlled in a nonequilibrium setting as the slow motion within the ground state manifold is
governed by the fast modes out of it. For the paradigmatic case of the classical pyrochlore XY
antiferromagnet, we show that a uniform magnetic field pulse can excite these fast modes to generate
a tunable effective free-energy landscape with minima at thermodynamically unstable portions of the
ground state manifold.
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The emergence of a thermodynamic landscape from
microscopic interactions, and its consequences for macro-
scopic behavior, is a central theme of condensed matter
physics. The essential role of fluctuation contributions to
the free-energy landscape is underlined by entropic inter-
actions in soft matter [1–3], infinite temperature phase
transitions [4,5], and, at low temperatures, the phenomenon
of order by disorder (OBD) [6–10].
This raises the question of how one can control a free-

energy landscape in a condensed matter system by manipu-
lating fluctuations instead of changing its Hamiltonian. In
equilibrium (EQ), the Boltzmann distribution fully dictates
the free-energy landscape and hence allows little room for
control. In this work, we show that such control is feasible
if one drives the system out of equilibrium, where fluctua-
tions dynamically produce a free-energy landscape that
may be tuned by changing the nonequilibrium conditions.
To illustrate this, we sketch a simple but generic

scenario. It is based on a crisp distinction between energetic
and entropic contributions to the free energy as exists at
low energies in a broad class of geometrically frustrated
magnets. This arises because geometrical frustration often
results in an accidentally degenerate ground state (GS)
manifold, i.e., a large, continuous family of degenerate GSs
not related by any symmetry operation. In EQ, the entropy
due to the thermal fluctuations near each GS can vary along
the manifold. Parametrizing the ground state manifold by
coordinates Q, one thus obtains an effective free energy
VðQÞ from integrating out the fluctuations, which can thus
lift the accidental degeneracy and tend to stabilize the GS(s)
with maximal entropy.
We focus on systems with Hamiltonian dynamics such as

frustrated vector spin models. We separate variables into
the pseudo-Goldstone modes describing the drift motion
within the GS manifold, and the other normal modes
involving deviations out of it (Fig. 1) [11]. In the low

temperature limit, the drift motion within the GS manifold
is vanishingly slow as they experience no linear restoring
force. By contrast, the other modes are fast owing to their
finite stiffness. Integrating these out (a controlled procedure
provided their frequencies are bounded above 0) yields
a nonequilibrium contribution to the effective free energy
of the form VðQÞ ∝ P

iIi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KiðQÞp

, with Ii > 0 being the
action variable of the ith excited normal mode, and Ki
being its Q-dependent stiffness [12]. Importantly, VðQÞ
can be tuned by adjusting the weights Ii. This we show can
be achieved straightforwardly by a magnetic field pulse.
We flesh out this scenario with a concrete model, for

which we establish properties of the effective landscape,
its tunability and resulting dynamics, as well as its
interplay with the thermal fluctuations. We also develop
an analytic toy model that transparently explains the central
phenomenon.
Consider the classical pyrochlore XY antiferromagnet,

which has gained prominence thanks to its likely realization
of OBD in the rare earth magnet Er2Ti2O7 [13–20],

H ¼
X

hiji
−
J�
2
ðSþi S−j þ H:c:Þ þ J��

2
ðeiψ ijSþi S

þ
j þ H:c:Þ

− JzzSziS
z
j: ð1Þ

FIG. 1. Geometrical frustration for vector spins produces an
accidentally degenerate GS manifold (blue ellipse) in many-body
configuration space (gray box).Q parametrizes the GS manifold,
and q the fluctuations out of it.
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Here, spin Si of length S resides on pyrochlore lattice site i.
The summation runs over nearest-neighbor bonds. Sx;y;zi are
the Cartesian components of the spin in the local frame
fx̂i; ŷi; ẑig, and S�i ≡ Sx � iSyi . ψ ij are bond-dependent
phase angles due to local spin frames (see [21] for details).
J�, Jzz parametrize anisotropic Heisenberg exchange
interaction, whereas J�� originates from a Dzyaloshinskii-
Moriya or pseudodipolar interaction. We assume J�>J��,
Jzz > 0. For simplicity, we have omitted a symmetry-
allowed term known as Jz� as it will not change the
physics discussed in this work.
We briefly review the OBD following from Eq. (1)

[15–20]. The GSs, which preserve lattice translation
symmetry, show Néel order with complex order parameter
O≡P

iS
þ
i =ðN SÞ (N is the number of sites). GS spin

configurations are Si ¼ Sðcosϕx̂i þ sinϕŷiÞ with ϕ ¼
argO [Fig. 2(a)]. Crucially, the GS energy is independent
of ϕ: Eq. (1) possesses an accidental Uð1Þ degeneracy
although it only exhibits discrete symmetries.
At small but finite temperature, the entropy due to the

spin wave fluctuations lifts the accidental degeneracy,
yielding six symmetry-equivalent maxima known as ψ2

states, located at ϕ ¼ mπ=3, m ∈ Z: thermal OBD corre-
sponds to an emergent entropic six-state clock anisotropy in
the Uð1Þ manifold.
To study the non-EQ dynamics of Eq. (1), we endow

the spins with precessional Landau-Lifshitz (LL)
dynamics. We begin with a toy model that captures the
essential features: taking the spins on each of the four
sublattices i ¼ 0–3 with the same orientation, Si=S ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2i

p
ðcosϕix̂þ sinϕiŷÞ þ ziẑi, reduces the degrees

of freedom to the four spins in a unit cell. In other words,
we freeze spin wave modes with wave vector k ≠ 0.
We define ϕ≡ ðϕ0 þ ϕ1 þ ϕ2 þ ϕ3Þ=4, ϕa ≡

ðϕ0 þ ϕ1 − ϕ2 − ϕ3Þ=2, ϕb ≡ ðϕ0 þ ϕ2 − ϕ1 − ϕ3Þ=2,
and ϕc ≡ ðϕ0 þ ϕ3 − ϕ1 − ϕ2Þ=2, along with correspond-
ing z and za;b;c. ϕ corresponds to the pseudo-Goldstone
mode, whereas ϕa;b;c correspond to finite-frequency optical
magnons. Linearizing Eq. (1) in ϕa;b;c yields [21]

ϕ̈l ¼−ω2
0flðϕÞϕ2

l ; ϕ̈¼− ~ω2
0

X

l¼a;b;c

ϕ2
l sinð2ϕþΘlÞ; ð2Þ

with rescaled variables such that J�S → 1, j�� ≡ J��=J�,
jzz ≡ Jzz=J�. l runs over labels a, b, c. flðϕÞ ¼
1 − j��=2 cosð2ϕþ ΘlÞ. Θa ≡ 0, Θb ≡ 2π=3, and Θc≡
−2π=3. ω0 ≡ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ jzz

p
and ~ω0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6j��ð1 − jzzÞ

p
are

constant frequencies.
Since ϕl ≪ 1, the optical magnons are fast harmonic

oscillators parametrically driven by the slow motion of the
pseudo-Goldstone mode ϕ. We thus proceed to integrate
out optical magnons by using the method of averaging
[12,22]. We obtain [21] ϕ̈ ¼ −∂VðϕÞ=∂ϕ, where

VðϕÞ ¼ 3ð1 − jzzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ jzz

p
X

l¼a;b;c

Il
ffiffiffiffiffiffiffiffiffiffiffi
flðϕÞ

p
ð3Þ

is the effective potential in the Uð1Þ degenerate manifold.
Il, the action variable of mode l, is an adiabatic invariant
[23], so that VðϕÞ is approximately time independent.
For Ia ¼ Ib ¼ Ic, VðϕÞ ∝ −j3�� cosð6ϕÞ þ oðj3��Þ with

minima at the states selected by OBD in EQ. For generic
values of Ia;b;c, however, the minima are twofold degen-
erate, VðϕÞ ¼ Vðϕþ πÞ and, crucially, located elsewhere.
Selectively exciting optical magnons thus permits con-

trol of the individual values of Ia;b;c and thereby VðϕÞ. This
can in fact be achieved simply via the polarization of an
applied magnetic field pulse. To see this, note that the
magnetization Ma;b;c along the crystallographic a, b, c
axes, to leading order in ϕa;b;c and za;b;c, is [21,24]

Ma;b;c

N μBS
¼ −

2g∥ffiffiffi
3

p za;b;c −
4g⊥ffiffiffi
6

p sinðϕ − Θa;b;cÞϕa;b;c; ð4Þ

with g∥ðg⊥Þ being the Landé g factor along the local ẑ axis
(x̂, ŷ axes): the a, b, cmagnons respectively carry magnetic
dipole moments in the three crystallographic axes.

FIG. 2. (a) GS of Eq. (1) in a unit cell. 0–3 label the sublattices.
Starting from a GS (blue solid arrows, corresponding to ϕ ¼ 0),
one obtains another GS (blue broken arrows, ϕ ¼ π=2) by
rotating all spins with respect to their local threefold axes. Inset:
Crystallographic axes (black arrows), pulse polarization (light
blue arrow), and polarization angle θB. (b) GS Néel order
parameter argument ϕ as a function of time t after a pulse with
polarization angle θB ¼ 0.15π. Results from the simulation of
Eq. (1) (blue) contrasted to a model with an inherently energetic
(rather than emergent entropic) clock term (red). (c) Effective
potential energy density VðϕÞ=½6ð1 − jzzÞ� in the GS manifold
from the toy model (black) and the model simulation in (b) (blue).
Gray dashed lines mark the positions of ψ2 states. (d) Potential
minima ϕmin as a function of pulse polarization angle θB. Black
solid lines show the two degenerate minima predicted by the toy
model. Blue crosses mark the center position of the ϕ oscillation
extracted from simulation.
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We next confirm numerically such generation and
control of an effective free-energy landscape. We first
equilibrate the model at temperature T and then apply a
short magnetic pulse whose temporal profile is a Dirac-δ
function: BðtÞ ¼ Bmaxn̂δðt=τÞ, where Bmax is the peak
strength, τ is the duration, and n̂ is the polarization.
After the pulse, we remove the bath and let the system
evolve according to the LL equation at t > 0.
The simulation uses a periodic lattice of 8 × 8 × 8 unit

cells. We do not observe significant system size depend-
ence in dynamics [21]. We integrate the LL equation via the
fourth order Runge-Kutta method (RK4). For nonzero T,
we generate 210 initial states for the LL equation from
canonical Monte Carlo calculations and average over
microcanonical trajectories. The RK4 step width is chosen
such that the relative error of energy ϵ < 10−5. The
integration stops at 103ℏ=ðJ�SÞ, corresponding to >103

oscillation cycles of optical magnons. Model parameters
j�� ¼ 0.646, jzz ¼ 0.192, g∥ ¼ 2.45, and g⊥ ¼ 6.0 are
similar to those for Er2Ti2O7 [16]. In EQ, the ψ2 states
occur with equal probability. We assume the model is
initially in a single domain with ϕ ¼ 0. Only the area of the
δ peak Bmaxτ enters the equation of motion, which we set to
0.1 ps · T [21]. The pulse polarization lies in the ab plane,
i.e., n̂ ¼ cos θBâþ sin θBb̂ [Fig. 2(a), inset]. In this setup,
the pulse only excites a and b magnons. The energy
deposited by the pulse is ∼10−3 J�S2 per spin.
First consider the T ¼ 0 limit. ϕ initially rests at 0 for

t < 0. The pulse generates a VðϕÞ whose minima are
located elsewhere. ϕ thus oscillates around a nearby
minimum of VðϕÞ [see Fig. 2(b) for θB ¼ 0.15π]. To
extract VðϕÞ from simulation, we use the conservation
of energy [21], VðϕÞ=½6ð1 − jzzÞ� þ K ¼ const., where the
first and second terms are respectively the potential and
kinetic energy density of the pseudo-Goldstone mode. K
can be evaluated from data. The result is in good agreement
with Eq. (3), with Ia;b;c extracted from the initial condition
[Fig. 2(c)].
We next show that the accidental degeneracy under-

pinning OBD is constitutive to the controllability of the
free-energy landscape in our present scheme. To do this, we
contrast Eq. (1) with a clock model where OBD is
mimicked by microscopic interactions yielding the same
degeneracy lifting [25]: we add a six-state clock anisotropy
term, −Δ=S4½ðSþi Þ6 þ H:c:�, to Eq. (1) and set j�� ¼ 0. For
the clock model, VðϕÞ ∝ −Δ cosð6ϕÞ, and the pulse only
produces a small renormalization ofΔ: forΔ=J� ¼ 10−4, ϕ
oscillates around 0 [Fig. 2(b)]. The oscillation amplitude is
small as the Néel order couples to the magnetic field
nonlinearly.
We further demonstrate the control on VðϕÞ by scanning

the field polarization n̂. As n̂ rotates from the a to the b
axis, Ib increases while Ia decreases. The Ia term of Eq. (3)
favors ϕ ¼ 0, π, whereas the Ib term favors ϕ ¼ −π=3,
2π=3. Thus, the minimum positions ϕmin continuously shift

from 0, π to −π=3, 2π=3. In numerical simulation, the shift
of ϕmin is manifest as the change of the center position of ϕ
oscillation [Fig. 2(d)]. The small discrepancy between the
toy model and the simulation is likely due to nonlinear
effects neglected in Eq. (2).
At nonzero temperature, the effective potential pro-

duced by optical magnons is also subject to the thermal
fluctuations in k ≠ 0 modes. In EQ, these modes produce
an entropic effective potential with the magnitude of
∼10−3kBT per spin. We now show that the above non-
EQ phenomena are nonetheless robust at low T. We start
with kBT=ðJ�S2Þ ¼ 10−3. Figures 3(a) and 3(b) show two
representative cases. For θB ¼ 0.1π, arghOi, the argument
of the average Néel order parameter, exhibits a persistent
oscillation with small damping. On the other hand, for
θB ¼ 0.5π, in addition to oscillation in the argument, the
modulus jhOij decreases quickly. However, the Néel order
persists as the average modulus squared hjOj2i ≈ 1 within
the simulation time window [Fig. 3(b)]. Thus, the decrease
in jhOij is due to the loss of anisotropy; i.e., the argument of
O explores the Uð1Þ degenerate manifold. This is made
clear by the histogram of argO for θB ¼ 0.5π, which
spreads out in the Uð1Þ manifold at late time [Fig. 3(d)].
The difference between these two types of behavior

originates dynamically as follows. Consider the a and b
magnons underpinning VðϕÞ. Their ensemble-averaged
action variables hIa;bi gradually decay in time, indicating

FIG. 3. (a) Argument and (b) modulus of the ensemble-
averaged complex Néel order parameter hOi as a function of
time t at kBT ¼ 10−3 J�S2. Blue and orange lines are for pulse
polarization angles θB ¼ 0.1π and 0.5π, respectively. (b) also
shows the ensemble average of modulus squared, hjOj2i, for
θB ¼ 0.5π (orange open circles). (c)(d) Histogram of the Néel
order parameter argument argO as function of time t at the same
temperature. (e) Same as (a) but for ensemble average of action
variables Ia (dots) and Ib (open circles) associated with the
optical magnons a and b. (f) Number of trajectories for which the
total energy of the pseudo-Goldstone mode exceeds the potential
maxima.
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that the energy is being slowly transferred to other modes
[Fig. 3(e)]. Note that Ia;b;c must equalize and ϕ must return
to ψ2 positions after the thermal equilibration time τeq. Yet,
the persistent difference in Ia;b indicates τeq > 103ℏ=J�S.
Comparing hIa;bi for θB ¼ 0.1π with θB ¼ 0.5π, the latter
exhibits a more pronounced decrease. This slow decay
implies that of VðϕÞ as well [Eq. (3)]. Now, the motion of
the pseudo-Goldstone mode ϕ is oscillatory as long as its
total energy E is less than the potential maxima Vmax. As
Vmax decreases, ϕ may therefore overcome the potential
barrier and enter an open orbit. As a qualitative test of this
picture, we extract E and Vmax from data and count the
number of trajectories for which E > Vmax [Fig. 3(f)]. For
θB ¼ 0.1π, the number of such trajectories is negligible,
whereas the count steadily grows in time for θB ¼ 0.5π.
Having gained a qualitative understanding of the

two representative cases, we consider the systematic θB
dependence of the order parameter dynamics [Fig. 4(a)].
Throughout, arghOi exhibits damped oscillation, while
jhOij decreases at a larger rate as θB approaches π=2.
Similar to T ¼ 0, the center of arghOi oscillation gradually
shifts from 0 to −π=3. The center position at early times
agrees with the potential minima of Eq. (3) with Ia;b;c
extracted from initial conditions. The small drift in oscil-
lation center at late time is due to a small change in the
relative weight of Ia;b;c and the increasing importance of
thermal fluctuations. The higher oscillation frequency at
larger θB results from the larger curvature of VðϕÞ. The
beating of the arghOi observed at θB ¼ 0.5π is likely due to
a finite-width distribution of the oscillation frequencies.

Finally, we study the temperature dependence of this
phenomenon. Figure 4(b) shows the order parameter
dynamics for fixed θB ¼ 0.15π. Damping of the oscillation
in arghOi increases with temperature T, while the oscil-
lation center moves toward 0. Both signify the growing
influence of thermal fluctuations. At kBT=ðJ�S2Þ ¼ 0.2,
arghNi is nearly stationary and very close to 0, which
suggests that the thermal fluctuations dominate over the
non-EQ potential from optical magnons. This is clearly
seen in the histogram of argO [Fig. 4(c)]: initially at a
single ψ2 state, the system escapes to other ψ2 states at late
time. Since the model remains XY ordered at this temper-
ature and hence no symmetry changes occur, we infer a
crossover at temperature T�, above which the landscape
essentially reverts to being thermal. Simple dimensional
analysis indicates T� scales with the energy density
deposited by the pulse.
Looking ahead, our identification of a tunable effective

free-energy landscape leads to a number of interesting
directions for future research. First, a more detailed analysis
of the finite temperature dynamics is needed for a complete
picture of the aforementioned crossover. Secondly, while
we have focused on classical models, it is intriguing to see
to what extent the physics discussed here has a natural
analogue in the quantum realm. This would be directly
applicable to quantum magnets such as Er2Ti2O7 and
NaCaCo2F7 [26–28], which hold the promise of allowing
a detailed and quantitative study of thermal and/or quantum
OBD effects.
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