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We theoretically show that, despite Earnshaw’s theorem, a nonrotating single magnetic domain
nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the
quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two
stable phases related to the Einstein–de Haas effect and the Larmor precession. At a stable point, we derive
a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system.
We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the
equilibrium point contains entanglement and squeezing.
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According to the Einstein–de Haas and Barnett effects
[1,2], a change in the magnetization of an object is
accompanied by a change in its rotational motion.
Specifically, if the magnetic moment of a magnet is varied
by a single Bohr magneton, it must rotate with an angular
frequency ℏ=I about the magnetic moment axis to conserve
angular momentum. Here, I is its moment of inertia about
the rotation axis. For a Cobalt sphere of radius R, this
corresponds to a frequency ℏ=I ≈ 2π × 106 Hz=ðR½nm�Þ5,
where R½nm� is the radius in nanometers. This clear
manifestation of the quantum spin origin of magnetization,
as prescribed by the gyromagnetic relation, is hence
boosted at the nanoscale [3–5].
In this Letter, we explore the role of the quantum spin

origin of magnetization in magnetic levitation. Earnshaw’s
theorem [6], very relevant in this context, prevents mag-
netic levitation of a nonrotating ferromagnet in a static
magnetic field. The theorem can be circumvented by
mechanically spinning the magnet, as is neatly demon-
strated by the Levitron [7–10], which is a magnetic top of a
few centimeters. At the single atom level, magnetic trap-
ping with static fields is also possible by exploiting the fast
Larmor precession of its quantum spin [11,12]. In this case,
the atom is, from the mechanics point of view, a point
particle without rotational degrees of freedom. A magnetic
nanoparticle lies between the Levitron and the atom, as
both its rotational degrees of freedom and the quantum spin
origin of magnetization have to be accounted for. Can a
nonrotating magnetic nanoparticle, despite Earnshaw’s
theorem, be stably levitated with static magnetic fields?
We show in this Letter that this is the case. Specifically,

we predict two stabilization mechanisms that crucially rely
on the quantum spin origin of the magnetic moment. At low
(large) magnetic fields, the Einstein–de Haas effect (the
Larmor precession of its magnetic moment) stabilizes
levitation. These results are obtained by deriving a quadratic

Hamiltonian which describes the linearized dynamics of the
degrees of freedom of the magnet (center-of-mass motion,
rotation, and magnetization dynamics) around the equilib-
rium point. We further show that, in the absence of thermal
fluctuations, the equilibrium state exhibits both quantum
entanglement and squeezing of its degrees of freedom. As
discussed in the conclusion, these results could be used to
bring and control the rich physics of levitated nanomagnets
in the quantum regime.
We consider a single magnetic domain nanoparticle

(called a nanomagnet hereafter) in an external static
magnetic field BðrÞ. The nanomagnet is modeled [13] as
a spherical rigid body of mass M and radius R, and with
uniaxial magnetocrystalline anisotropy [14]. The dynamics
are described in the body frameOe1e2e3, with e3 aligned to
the direction of the anisotropy axis. The body frame is
obtained from the laboratory frameOexeyez by the rotation
RðΩÞ, as defined in Ref. [15], where Ω ¼ fα; β; γg repre-
sents the Euler angles. The Hamiltonian of the system in the
body frame is given by [15]

Ĥ ¼ p̂2

2M
þ ℏ2

2I
ðĴþ ŜÞ2 − ℏ2DŜ23 þ ℏγ0Ŝ ·Bðr̂; Ω̂Þ: ð1Þ

Here, Ĵ≡ L̂þ μ̂=ðℏγ0Þ is the total angular momentum
(excluding the center-of-mass angular momentum), Ŝ≡
−μ̂=ðℏγ0Þ the spin angular momentum [16], L̂ the rigid
body angular momentum, μ̂ the magnetic moment operator,
and γ0 > 0 the gyromagnetic ratio [17]. The macrospin
approximation is assumed, namely, that the total magneti-
zation is constant, which results in Ŝ2 ¼ SðSþ 1Þ1, with
S≡ Nf for N identical spin f constituents of the nano-
magnet [18]. The first (second) term in Eq. (1) represents
the center-of-mass (rotational) kinetic energy of the nano-
magnet. The third term represents the uniaxial magneto-
crystalline anisotropy, whose strength is parametrized by
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D≡ 4πR3ka=ð3ℏ2S2Þ, with ka being the material-depen-
dent anisotropy constant [18]. The last term represents the
magnetic dipolar interaction, where Bðr;ΩÞ≡ RðΩÞBðrÞ.
Hereafter, we consider an Ioffe-Pritchard magnetic
field, i.e., BðrÞ ¼ exðB0x−B00xz=2Þ− eyðB0yþB00yz=2Þþ
ez½B0 þB00z2=2−B00ðx2 þ y2Þ=4�, where B0, B0, and B00
are, respectively, the field bias, the gradient, and the
curvature [19]. Gravity, which is assumed to be along
the z axis, can be safely neglected since, throughout the
Letter, the condition Mg=ðμB00Þ ≪ ðB0=B00Þ1=2; ðB0=B00Þ is
fulfilled, where g is the gravitational acceleration; see
Ref. [20] for further details. The rotational angular momen-
tum of the nanomagnet about the anisotropy axis is a
constant of motion, ½L̂3; Ĥ� ¼ 0 [15]. The degrees of
freedom of the system—namely, the center-of-mass
motion, the rotational motion, and the magnetization
dynamics—are thus described by 12 independent dynami-
cal variables (see Ref. [20] for further details). In the
following, we address whether the nanomagnet can stably
levitate for a given set of physical parameters of our model:
mass density ρM, magnetization ρμ, ka, R, B0, B0, and B00.
Let us first obtain the equilibrium configuration of the

system. By writing the Heisenberg equations of motion
for the nanomagnet in semiclassical approximation [20],
the following relative equilibrium is found (see Fig. 1).
(i) The center of mass is fixed at the center of the trap.
(ii) The orientation is given by the body frame aligned to
the laboratory frame (e3∥ez) and rotating about e3 at the
frequency ωS ≡ −ℏhL̂3i=I. (iii) The magnetic moment lies
along the anisotropy axis e3 and is antialigned to the
magnetic field Bð0Þ ¼ B0ez. The stability of this relative
equilibrium is analyzed in the frame corotating with the
system [20,21]. This is obtained via the unitary trans-
formation Û ¼ expð−iωSL̂3tÞ, which transforms Ĥ into
Ĥ þ ℏωSL̂3.
The linear stability of the system is determined by the

dynamics of the fluctuations of the degrees of freedom

around the equilibrium. The evolution of small fluctuations
can be described as a collection of interacting harmonic
oscillators through the bosonization procedure presented
in Ref. [15]. In the following, we provide the mapping
between the observables and the bosonic operators and
refer to Ref. [15] for its derivation and for further details.
The fluctuations of the center-of-mass motion are described
by three independent harmonic oscillators:

ẑ≡ z0ðb̂z þ b̂†zÞ; p̂z ≡ iℏ
2z0

ðb̂†z − b̂zÞ ð2Þ

for the motion along ez, and

r̂þ ≡ ffiffiffi
2

p
r0ðb̂†R þ b̂LÞ; p̂þ ≡ i

ℏffiffiffi
2

p
r0

ðb̂†L − b̂RÞ ð3Þ

for the transverse motion, where r̂� ¼ x̂� iŷ and p̂� ¼
p̂x � ip̂y. Here, z0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2MωZÞ

p
and r0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2MωTÞ

p
are the zero-point motions and ωZ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏγ0B00S=M
p

and

ωT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏγ0SðB02 − B0B00=2Þ=MB0

p
the trap frequencies.

We introduced three bosonic modes with ½b̂i; b̂†j � ¼ δij
for i; j ¼ z, R, L. The harmonic oscillators describing
the fluctuations of the rotational degrees of freedom are
obtained as follows. A Holstein-Primakoff mapping gen-
eralized to the case where Ĵ2 is not conserved [22] leads to

Ĵ↑ ¼ Ĵ†↓ ≡ Ĵ1 − iĴ2 ¼
ffiffiffiffiffi
2J

p
k̂†; ð4Þ

Ĵ3 ¼ −J −
ffiffiffiffiffi
2J

p
ðĵþ ĵ†Þ=2 − ĵ†ĵ=2þ k̂†k̂: ð5Þ

The k-bosonic mode (½k̂; k̂†� ¼ 1) describes the fluctuations
of Ĵ3 around hĴ3i¼−J≡−IωS=ℏ−S. As discussed below,
we assume J ≫ 1. The j-bosonic mode (½ĵ; ĵ†� ¼ 1)
describes the fluctuations of Ĵ2 around hĴ2i ¼ JðJ þ 1Þ.
Since the components of Ĵ in the laboratory frame commute
with Ĵ3 and Ĵ↓↑ [23], they need to be bosonized separately
as

Ĵþ ¼ Ĵ†− ≡ Ĵx þ iĴy ¼
ffiffiffiffiffi
2J

p
m̂†; ð6Þ

Ĵz ¼ −J −
ffiffiffiffiffi
2J

p
ðĵþ ĵ†Þ=2 − ĵ†ĵ=2þ m̂†m̂: ð7Þ

The additional m-bosonic mode (½m̂; m̂†� ¼ 1) represents
the fluctuations of Ĵz around hĴzi ¼ −J. The bosonization
of the Euler angle operators is more involved [15]. Since Ω̂
appears in Eq. (1) only inside trigonometric functions, the
Euler angle operators can be written as functions of the nine
Wigner D-matrix tensor operators D̂1

mk with m; k ¼ �1; 0.
The exact bosonization of these operators is given in
Ref. [15] in terms of the j − k −m-bosonic modes. The
fluctuations of the magnetic moment under the macrospin

FIG. 1. Relative equilibrium for a magnetically levitated nano-
magnet. The nanomagnet is at the center of the trap and rotates
about its magnetization axis at the constant frequency
ωS ≡ −ℏhL̂3i=I. The magnetic moment lies along the anisotropy
axis and is antialigned to Bð0Þ ¼ B0ez.
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approximation [Ŝ2 ¼ SðSþ 1Þ1, with S ≫ 1] can be
described by the standard Holstein-Primakoff approxima-
tion, namely [16,24],

Ŝ↑ ¼ Ŝ†↓ ≡ Ŝ1 − iŜ2 ¼
ffiffiffiffiffiffi
2S

p
ŝ; ð8Þ

Ŝ3 ¼ S − ŝ†ŝ: ð9Þ

The s-bosonic mode describes fluctuations of Ŝ3 around
hŜ3i ¼ S. In summary, the fluctuations of the degrees of
freedom of the nanomagnet around the equilibrium illus-
trated in Fig. 1 are described by seven bosonic modes.
Let us now derive the Hamiltonian describing the

dynamics of these bosonic modes. Note that since L̂3 ¼
Ĵ3 þ Ŝ3 is a constant of motion, the bosonic modes are
constrained by

ffiffiffiffiffi
2J

p ðĵ† þ ĵÞ ¼ ĵ†ĵ=2 − k̂†k̂ − ŝ†ŝ. Together
with the assumption of a slowly rotating nanomagnet,
namely, jIωS=ℏj ≪ S, which implies J ≫ 1, the bosoniza-
tion procedure transforms Ĥ þ ℏωSL̂3 into a quadratic
Hamiltonian that depends on six bosonic modes:
b̂z; b̂R; b̂L; m̂; k̂, and ŝ. Terms containing the j mode, as
well as nonquadratic terms, are of the order ð1=JÞn=2 for
n ¼ 1; 2;…, and they can thus be safely neglected. The
quadratic Hamiltonian reads

Ĥq ≡ ĤZ þ ĤT ¼ ℏ
2
ðΨ̂†

ZMZΨ̂Z þ ψ̂†Cψ̂ þ ψ̂C�ψ̂†Þ:
ð10Þ

The first term describes the fluctuations of the center-of-
mass motion along ez, where Ψ̂Z ¼ ðb̂z; b̂†zÞT and MZ ¼
ωZ12. The second term describes the fluctuations of the
other degrees of freedom, where ψ̂ ≡ ðb̂†R; k̂†; b̂L; m̂; ŝÞT
and

C≡

0
BBBBBB@

ω− gη −ωþ −gη g

gη ωk gη ωLη
2 ωkη

−1

−ωþ gη ω− −gη g

−gη ωLη
2 −gη −ωLη

2 ωLη

g ωkη
−1 g ωLη ωμ

1
CCCCCCA
: ð11Þ

Here, we defined η≡ ffiffiffiffiffiffiffiffi
S=J

p
, the Larmor frequency

ωL ≡ γ0B0, the anisotropy frequency ωD ≡ ℏDS, the
Einstein–de Haas frequency ωI ≡ ℏS=I, the frequencies
ωk≡ωIþωS−ωLη

2, ωμ≡ωIþ2ωD−ωL, and ω�≡ðωT�
ω2
Z=ωTÞ=2, and the coupling strength g≡ ωLB0σT=B0. As

shown below, the hierarchy betweenωL, ωD, andωI plays a
crucial role in the stability of the nanomagnet.
The linear stability of the equilibrium can be determined

by the Heisenberg equations of motion

∂tΨ̂Z ¼ 1

iℏ
½Ψ̂Z; ĤZ�≡ iKZΨ̂Z ¼ iσzMZΨ̂Z; ð12Þ

∂tΨ̂ ¼ 1

iℏ
½Ψ̂; ĤT �≡ iKTΨ̂ ¼ iGMTΨ̂: ð13Þ

Here, σz ¼ diagð1;−1Þ, G≡ 15 ⊗ σz, and MT ¼ M†
T is

given by rewriting ĤT as ĤT ¼ ℏΨ̂†MTΨ̂=2, where
Ψ̂≡ ðb̂R; b̂†R; b̂L; b̂†L; m̂; m̂†; k̂; k̂†; ŝ; ŝ†ÞT . The dynamics
of the system are completely characterized by the character-
istic polynomials of iKZ and iKT . Linear stability occurs
when the roots of the polynomials have a zero real part
[21]. The characteristic polynomial of iKZ reads PZðλÞ ¼
λ2 þ ω2

Z, which has purely imaginary roots for B00 > 0. The
matrix iKT can be block diagonalized in two 5 × 5 complex
conjugate blocks whose characteristic polynomial is given
by PTðλÞ ¼ a0 þ a1λþ a2λ2 þ a3λ3 þ a4λ4 þ a5λ5, where

a0 ≡ −2ωDωIωLω
2
T;

a1 ≡ i½ωDω
2
ZðωS þ ωIÞ þ ωSωLω

2
T �;

a2 ≡ −2ωDωIωL −
1

2
ð2ωD − ωSÞω2

Z − ωLω
2
T;

a3 ≡ i

�
−2ωDðωS þ ωIÞ þ ωSωL þ 1

2
ω2
Z

�
;

a4 ≡ 2ωD − ωS − ωL;

a5 ≡ −i: ð14Þ

The analysis of PZðλÞ and PTðλÞ as functions of the
physical parameters of the problem provides the stability
diagram of a magnetically levitated nanomagnet, as dis-
cussed below. These polynomials can be alternatively
obtained either by using classical equations of motion or
via the linearized Heisenberg equations of motion in
semiclassical approximation without performing the boso-
nization; see Ref. [20]. Such methods allow us to under-
stand the results concerning the stability of a nanomagnet
without the need to introduce the bosonization of the
quantum mechanical operators. The procedure performed
here is richer since it allows us to obtain the quadratic
Hamiltonian Ĥq describing the quantum fluctuations
around equilibrium as well as the quantum properties of
the states in equilibrium.
Let us now analyze the linear stability of the system in

the nonrotating case (see Ref. [20] for the ωS ≠ 0 case).
The stability phase diagram derived using Eqs. (12) and
(13) is shown in Fig. 2. This is a two-dimensional phase
diagram with the x axis given by the bias field B0 and the y
axis given by the radius of the nanomagnet R. The
remaining physical parameters are fixed; see the caption
of Fig. 2. Two stable phases are found. The Einstein–de
Haas (EdH) phase appears at low magnetic fields and
for small radii. In this regime, the dynamics of the
magnetization is dominated by the anisotropy interaction
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(ωD ≫ ωL). Because of the small moment-of-inertia-to-
magnetic-moment ratio (ωI ≫ ωL), the angular momentum
contribution of the macrospin stabilizes the system through
the Einstein–de Haas effect [1]. That is, the macrospin is
locked along the anisotropy direction due to the conserva-
tion of energy [4,25,26]. Even if rotation is absent, the spin-
rotation interplay described by the Einstein–de Haas effect
stabilizes the nonrotating magnet by keeping the macrospin
aligned along the anisotropy direction. The atom (A) phase
appears at high magnetic field bias (ωL ≫ ωD). In this
regime, the nanomagnet behaves like a magnetic atom of
mass M and spin S [11,12]: the anisotropy interaction can
be neglected and the magnetic moment undergoes a free
Larmor precession about the local magnetic field direction.
The approximated expressions for the borders of the stable
phases, given in the caption of Fig. 2, can be analytically
obtained from the discriminant of the characteristic poly-
nomials [20].
The stability diagram shows that a nonrotating nano-

magnet can be stably levitated in a static field configuration.
This opens up the possibility of cooling the thermal
fluctuations of the degrees of freedom to the quantum

regime. The feasibility and analysis of such an experimental
proposal will be addressed elsewhere. Let us now analyze
the properties of the quantum state at the equilibrium in
the absence of thermal fluctuations. This state corresponds to
the vacuum state j0i of the normal eigenmodes of
the quadratic Hamiltonian equation (10): b̂Z and ĉi for
i ¼ 1;…; 5 (½ĉi; ĉ†j � ¼ δij). The c-bosonic modes Φ̂≡
ðĉ1; ĉ†1;…; ĉ5; ĉ

†
5ÞT are obtained from modes Ψ̂ through a

Bogoliubov transformation Φ̂ ¼ T−1Ψ̂ such that T†MTT ¼
diagðω1;ω1;…;ω5;ω5Þ and T†GT ¼ G. At each stable
point of the phase diagram, the transformation T exists
[27] and can be constructed as follows. One first obtains the
eigenvalues λi and eigenvectors vi (for i ¼ 1;…; 10) of KT .
At a stable point, KT is diagonalizable and the λi values are
real and nondegenerate. One then G orthonormalizes the
eigenvectors such that, with an appropriate relabeling, they
fulfill v†i Gvj ¼ þδij for i; j ¼ 1;…; 5 and v†i Gvj ¼ −δij
for i; j ¼ 6;…; 10 [28]. The Bogoliubov transformation
matrix is then given by T ¼ ðv1u1…v5u5Þ (the vectors vi
and ui are the columns of the matrix), where
ui ≡ ðσx ⊗ 15Þv�i , with σx being the nondiagonal-real-
valued Pauli matrix.
One can now analyze the properties of the vacuum state

j0i, which is a multimode Gaussian state, by the 10 × 10
covariance matrix [29]

Θij ≡ 1

2
h0jðΨ̂iΨ̂

†
j þ Ψ̂†

jΨ̂iÞj0i ¼
1

2

X10
k¼1

TikðT†Þkj: ð15Þ

Note that the b̂Z-bosonic mode is not included in Θ since it
is decoupled from all of the other modes. The five 2 × 2

diagonal blocks ðΣaÞij ≡ h0jðφ̂iφ̂
†
j þ φ̂†

j φ̂iÞj0i=2 of Θ,
with φ̂≡ ðâ; â†Þ and â ¼ b̂L; b̂R; m̂; k̂; ŝ, correspond to
the covariance matrices of the a modes. The off-diagonal
blocks describe the correlations between the modes.
Entanglement in the pure state j0i can be quantified by
P ≡ 5 −

P
aPa, where Pa ¼ ½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðΣaÞ
p �−1 [30] is the

purity of the a-bosonic mode. This characterizes the
bipartite entanglement between one mode and the remain-
ing four. Single-mode squeezing can be quantified via the
squeezing parameter ξ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2minkðθkÞ

p
, where θk repre-

sents the eigenvalues ofΘ [29]. Figure 2 showsP and ξ as a
function of B0 for a given R in the stable phases. Bipartite
entanglement and single-mode squeezing are thus present
in the j0i state of a magnetically levitated nonrotating
nanomagnet.
In conclusion, we showed that the quantum spin origin of

the magnetization stabilizes magnetic levitation of a non-
rotating nanomagnet, despite the Earnshaw theorem. Such
a quantum spin stabilized levitation opens the door to
experiments aiming not only at demonstrating the predicted
phase diagram but also at bringing a nonrotating nano-
magnet to the quantum regime, whose equilibrium states

FIG. 2. (Top panel) Stability diagram for a nonrotating nano-
magnet for ρM ¼ 104 kg=m3, ρμ ¼ ½ρMμB=ð50 amuÞ� J=ðTm3Þ
(μB is the Bohr magneton and amu the atomic mass unit),
ka ¼ 104 J=m3, B0 ¼ 104 T=m, and B00 ¼ 106 T=m2. The red
dashed lines represent the approximate borders Bc1 ¼
3½ℏρμB02=ð4μBγ0ρMÞ�1=3, Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ρμ=ð8γ20B0ρMÞ

q
, and Bc2 ¼

2kaμB=ðℏγ0ρμÞ of the stable EdH phase (the red region) and
the A phase (the blue region). (Bottom panel) Entanglement P
(the black dashed line), and squeezing ξ (the gray solid line) of
the quantum state j0i at the equilibrium as a function of B0 in the
stable regions for R ¼ 2 nm (the green dashed lines in the
stability diagram).
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show nontrivial quantum correlations. There are many
directions left for further research, some of which we
are currently addressing: the experimental proposal and
feasibility analysis to prepare the j0i state by sympatheti-
cally cooling the degrees of freedom of a levitated nano-
magnet near a flux dependent microwave cavity; the
analysis and the potential applications (e.g., spin squeezing
for magnetic sensing) of the quantum dynamics generated
by placing the nanomagnet at the unstable regions of the
phase diagram; levitating, coupling, and cooling several
nanomagnets in the quantum regime to study quantum
nanomagnetism in a unique substrate-free environment. We
hope that such results and their potential applications will
trigger further theoretical and experimental research to
levitate nanomagnets in the quantum regime.
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−iϵijkŜk (½Ŝμ; Ŝν� ¼ −iϵμνλŜλ) for i, j, k ¼ 1, 2, 3
(ν; μ; λ ¼ x, y, z) [15].

[17] We assume that the magnetization arises from the electron
spins, for which γ0 ¼ 1.760 rad T−1 s−1.

[18] D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nano-
magnets (Oxford University Press, New York, 2011).

[19] J. Reichel and V. Vuletic, Atom Chips (Wiley-VCH Verlag,
Weinheim, 2011).

[20] C. C. Rusconi, V. Pöchhacker, J. I. Cirac, and O. Romero-
Isart, Phys. Rev. B 96, 134419 (2017).

[21] J. D. Meiss, Differential Dynamical Systems (Society for
Industrial and Applied Mathematics, Philadelphia, 2008).

[22] A. Klein and E. R. Marshalek, Rev. Mod. Phys. 63, 375
(1991).
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