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We study topological excitations in two-component nematic superconductors, with a particular focus on
Cu,Bi,Se; as a candidate material. We find that the lowest-energy topological excitations are coreless
vortices: a bound state of two spatially separated half-quantum vortices. These objects are nematic
Skyrmions, since they are characterized by an additional topological charge. The inter-Skyrmion forces are
dipolar in this model, i.e., attractive for certain relative orientations of the Skyrmions, hence forming multi-

Skyrmion bound states.
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Bulk superconductivity in topological insulator materials
has recently been observed in electron-doped Cu,Bi,Ses in
Refs. [1-3], and unusual superconducting states in this
system were theoretically considered in Ref. [4]. There, it
was argued that the fully gapped single-order parameter
superconductor, which has a spin-triplet pairing with odd
parity and that possesses topologically protected gapless
surface states, is favored over other superconducting states.
It was later put forward [5] that the interplay of the crystal
lattice anisotropy and the nematic superconductivity might
be consistent with Knight-shift anisotropy measurements in
Cu,Bi,Se; that show spontaneous breaking of the spin-
rotation symmetry below the superconducting transition
temperature [6]. In this model, the nematic superconducting
state has an odd-parity spin-triplet pairing and is described
by a two-component order parameter that spontaneously
breaks the rotational symmetry in the basal plane of the
lattice. This scenario of nematic superconductivity is
supported by the recent observation of twofold rotational
symmetry of the magnetic field in specific heat and upper
critical field measurements of the superconducting state [7].
Bulk superconductivity was also reported in Sr,Bi,Ses
[8-10] and in magnetically doped Nb,Bi,Se; [11,12],
where upper critical field [10] and magnetic torque mea-
surements [12] reveal signatures of rotational symmetry
breaking in the amplitude of the superconducting gap.

Nematic superconducting states have interesting proper-
ties that were recently theoretically addressed. For example,
such states show a specific anisotropy of the upper critical
magnetic field [13], undergo phase transitions to super-
conducting states that break the time-reversal symmetry as
a result of the interplay of ferromagnetism and super-
conductivity [14,15], and host Majorana fermions at the
surface [16,17]. This raises the question of the properties of
topological excitations in this kind of materials. Recent
work [18] presented an ansatz-based investigation of
Kramers pairs of Majorana fermions bound inside a
specific type of composite vortices that do not carry
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magnetic flux. In the model that we consider below, such
an ansatz describes unstable vortex solutions.

In this Letter, we address the question of the nature of the
lowest-energy vortex excitations in nematic superconduc-
tors. To this end, we investigate vortex solutions in a two-
component Ginzburg-Landau (GL) model consistently
derived from the microscopic theory. We find that the
lowest-energy topological excitations are coreless and con-
sist of two spatially separated half-quantum vortices
(HQVs) [19], such that the total superconducting density
has no zeros. These excitations can be characterized by a
Skyrmion topological index, which is zero for singular
vortices. Heuristically, the Skyrmion terminology follows
from the fact that the coreless vortex can be seen as a texture
of a unit vector that fully covers the target two-sphere. The
unit vector that maps to the target two-sphere is defined as a
projection of the superconducting degrees of freedom
(d.o.f.) onto the vector composed of the Pauli matrix set.

Such a coreless vortex, which is a bound state of two
HQVs, shows as a dipolelike configuration of the relative
phase between the components of the order parameter and
thus can mediate a long-range dipole interaction between
the Skyrmions, thus binding them together into a multi-
Skyrmion bound state.

We consider a model of a three-dimensional topo-
logical insulator in the presence of a magnetic field, having
in mind Bi,Se; as a particular material candidate, which is a
narrow gap semiconductor with a layered crystal stru-
cture. The system is described by the Hamiltonian 'H =
[ (r)H(r)¥(r)d’r, with

H(r) = vz, {o- X (—iV —;A(r))] -2
+ .1, <—iVZ - SAZ(r)> tmr. (1)

where A(r) is the vector potential, ¢ < 0 is the electric
charge, and m describes the coupling between the orbitals of
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BiySe;. Here, » and v, are the Fermi velocities that
characterize the anisotropic dispersion of the massive
Dirac fermion in the absence of the magnetic field:
E.(p) = £{o*(pi + p}) + vZp? + m*}'/?, where p =
(Px: Py. p;) is the momentum of a particle. The Pauli
matrices o, and 7, (with a = x,y, 7), respectively, describe
thereal spin (1, | ) and the orbital pseudospin (1,2) d.o.f. The
electron operator is given by ¥(r) = (¥4 (r). ¥, (r),
W,(r), ¥, »(r))", =1 units are used here, and spin
and pseudospin indices are omitted for clarity of notation
throughout the Letter. The Zeeman contribution of the
magnetic field to the Hamiltonian (1) is neglected compared
to that of the orbital effect. We also note that, although there
is strong spin-orbit interaction in each orbital, the inversion
symmetry of the system is preserved.

As demonstrated in Ref. [4], the electron-phonon inter-
action might lead to several distinct s-wave superconducting
instabilities in this system: intraorbital spin singlet, inter-
orbital spin singlet, and interorbital spin triplet. Motivated
by the experimental signatures for nematic superconductiv-
ity, we focus here on the interorbital spin-triplet pairing,
which is described by the interaction Hamiltonian within the
Bardeen-Cooper-Schrieffer (BCS) approximation:

Hyes = -3 / B (1), (1) Ay,(r) + Hel.  (2)

where A, (r) = AW, (r)¥, (r)) with the interaction con-
stant 4 > 0. Note that we consider the zero harmonic of the
electron-phonon interaction potential, which shall give a
higher temperature of the superconductor-metal phase
transition than higher harmonics. To proceed, we introduce
the Bogoliubov—de Gennes (BdG) Hamiltonian Hgyg =
1 [ @7 (r)Hpyg (r)®@(r)d®r, where

H(r) —p
A*(r)

A(r)
—o,H*(r)o, +p

Hpyg(r) = (3)

is written in the Nambu notation: ®'(r) = (¥(r),
Y7 (r)(—ioy)). We assume the Fermi level to be in the
conduction band and hence set > |m/|. In what follows, we
consider the interorbital spin-triplet pairing of the form
A(r)=6-A(r)z,, where A(r) = [A,(r), A,(r), 0], such that
Ax(r):—t[AM(r)—Au(r)]/Z, and A},(r) = _[ATT(I‘) +
Ay (r)]/2. The strong spin-orbit interaction locks electron
spin to the momentum, thus fixing the orientation of vector
Ato [A(r),A(r),0].

In order to investigate the structure of the topo-
logical excitations, we derive microscopically the GL
free energy functional for the two-component order
parameter A, = (A, £iA))/ V2 (for details of the
derivation, see Supplemental Material [22]). The scaled
Ginzburg-Landau free energy functional reads as 4zF =
mB, [{F(R)+ [V x a(R)]>}d>R, where

F=Y (—|As|2 LD + DA 1 AID.A P
s=-+

A1t
2

p D) DaL S DA PALE). @)

where A, = |A.|e’”=. Here we have defined the order
parameter A (R) in the scaled form. The explicit scaling
transformation for coordinate R, vector potential a(R ), and
operator D = D, =& iD, in which D = —(i/x)Vy + a(R)
is given in Supplemental material [22]. In dimensionless
units, the coupling constant x parametrizes the magnetic
field penetration length relative to a characteristic length
scale associated with density variation. Its explicit expres-
sion through the parameters of the microscopic model is
given in Supplemental Material [22] [Eq. (F.73)], as well as
the expression for other coefficients h, /,,, #, ., and y. For
Kk < 1, the vortex core energy is relatively large and the
thermodynamically stable Skyrmions do not form.

The anisotropy of the electronic spectrum results in the
anisotropic gradient terms on the first line of the GL
functional (4). The interplay of the two-component order
parameter and strong spin-orbit interaction gives rise to the
mixed gradient term with the coefficient 0 < #; < 1 on the
second line in Eq. (4). The GL free energy functional
density is invariant under the joint rotation of coordinates
and the components of the order parameter [23]. Finally,
the value of y determines whether the superconductor is in
the nematic 0 < y < 1 or in the chiral y > 1 phase. Indeed,
in the spatially homogeneous case, when 0 <y < 1 the
free energy is minimal if the order parameter has the form
A = Ay(cos6,sin@,0) (for some real constant 6 and
|Ao| = 1/+/TF7), while it reads as A = Ay(1,+i,0)
(where |Ag| = 1) when y > 1.

Time-reversal symmetry is preserved in the nematic state.
The chiral state, on the other hand, is characterized by the
nonzero electron spin polarization o |A(r) x A*(r)| # 0.
Interestingly, nontrivial pseudospin polarization, antiferro-
magnetic spin orientation in two orbitals, shows up in the
first gradients of the order parameter in both the chiral and
nematic cases; see Supplemental Material [22].

The GL equation for the component A, of the order
parameter is obtained by the functional variation of Eq. (4)
with respect to Aj:

(D} 4 D} + B.D2)As + (|A > +y]A_[* = 1)A,
- —/)U_D?A_S (5)

and is supplemented by the boundary condition
N-DA; + (ﬁz_ I)NZDZAS +NSDSA—S|surf =0, (6)

where Ny = N, + isN, and N is the unit vector directed
normal to the surface. Note that here we do not consider the
effects of the localized surface states. Finally, the vector
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potential a(R) of the magnetic field b(R) = V; x a(R)
satisfies

—2Vxb=> {[A!DA,+(8,—1)A:D,A, +c.c]
=+

§=

+ (& +is9)BL[AID A +A_(D_ AT} (7)

We now turn to the investigation of the nature of
topological excitations in the nematic superconductor. In
two-component models, due to the coupling of the compo-
nents to the vector potential a(R), the only solutions with
finite energy per unit length have the same phase winding in
both components of the order parameter, that is, a bound
state of vortices in the different components, each carrying a
fraction of magnetic flux that adds up to a single flux
quantum. In the current model of the nematic superconduc-
tor, vortices in each component of the order parameter carry
half of a magnetic flux quantum; hence, they are half-
quantum vortices (HQVs) [24]. Typically, the magnetic
interaction between HQV's favors cocentricity of the vortex
cores in the different components (see, e.g., a detailed
discussion in Ref. [25]). On the other hand, the model
considered here also features mixed gradients and biquad-
ratic density-density terms that result in the repulsion
between the cores of the half-quantum vortices. Provided
the latter dominate, the competition between those forces
may result in a bound state of nonoverlapping half-quantum
vortices, thus breaking the axial symmetry of the solution.

To address whether vortices are singular (cocentered
HQYV) or coreless (i.e., noncocentered HQV), we numeri-
cally construct vortex solutions by minimizing the free
energy (4), starting by an initial configuration, in which both
components A, have the same winding. The theory is
discretized within a finite-element formulation [26] and
minimized using a nonlinear conjugate gradient algorithm
[27]. Minimization procedure leads, after the convergence of
the algorithm, to a vortex configuration that carries a number
of flux quanta that is specified by the initial phase winding.
Figure 1 shows such a single-quantum vortex configuration
in the model (4) for the nematic superconductor. Note that
the picture shows a close-up view, displaying only a small
part of the simulated numerical grid, which is chosen to be
large enough so that vortices do not interact with the
boundaries. Clearly, the vortex solution is not axially
symmetric. Inspection of the core structure reveals that
HQVs in different components are spatially separated and
thus that this bound state of HQVs is coreless; i.e., there is no
singularity of total density of superconducting components:
[[A, (R)]> +|A_(R)[*]'/2. We simulated vortex solutions
for various initial guesses that always converge to configu-
rations as in Fig. 1. All investigated values of the parameter x
led to coreless vortices in the type-II regime. The distance
between HQVs is determined by the competition between
magnetic attraction and repulsion mediated by other
terms such as density-density interaction. This cannot be

- — —— -7‘1’
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FIG. 1. Close-up view of the vortex core structure in the
nematic phase in which we set v = v,, f, =0, and for k = 3.
On the first line, the first panel shows the distribution of the
magnetic field, while the second displays the relative phase
between the two components of the order parameter. The second
line shows the densities of the two components of the order
parameter. Clearly, the cores in both components do not super-
impose, thus implying that vortices in the nematic phase are
coreless defects. Since cores do not overlap, the relative phase has
427 winding around each core. Furthermore, the relative phase
exhibits a dipolar mode that is long-ranged.

addressed analytically, but quantitatively it can be seen that
increasing the value of k decreases binding the HQVs, thus
increasing their separation. Since the superconductor is
substantially away from the type-I regime, and because
these excitations are energetically cheaper than singular
vortices, a lattice of Skyrmions will form in the external
field.

As singularities in both components do not overlap, there
is a dipolelike configuration of the relative phase ¢_ — ¢
between the components. Importantly, the phase-difference
gradients are very strong. This indicates that intervortex
forces include torque and a long-range dipole interaction
that can lead to a long-range attraction between single-
quanta vortices. As displayed in Fig. 2, by initially setting a
double phase winding in each component, we find that
indeed two single-quantum vortices form a bound state due
to the dipolar forces. Note that the presence of dipolar
interactions usually has clear signatures in structure for-
mation. In particular, studies of Skyrmion solutions in other
systems with dipolar inter-Skyrmion forces [28-30] show,
for example, that hexagonal symmetry is unfavorable for
the Skyrmion lattices. Moreover, the long-range dipolar
interaction can also result in long-range attractive inter-
action between Skyrmions and boundaries of a super-
conductor, thus suggesting a possible abundance of
topological defects near boundaries in a weak applied
magnetic field.

Bound states of nonoverlapping HQVs are coreless
defects that can be called Skyrmions, and the reason for
that terminology is that they exhibit additional topological
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FIG. 2. A close-up view of a bound state of two coreless
vortices carrying one flux quantum each. Each coreless vortex is a
well-localized bound state of two HQVs. The dipolelike forces in
the relative phase yields a long-range attraction that binds the
single-quantum vortices together. Note that the dipoles are
antialigned in the bound state as dictated by relative phase
interaction. Displayed quantities are the same as in Fig. 1.

properties, as compared to singular vortices. These can be
seen by introducing the unit vector n, defined as the
projection of the superconducting d.o.f. 77 = (A%, A¥)
onto spin-1/2 Pauli matrices &, as n = 5'6n/n'y. That
is, the x and y components of the vector n depend on the
phase difference, while the z component is determined by
the ratio of the moduli of the complex fields. The associated
projection is a map from the one-point compactification of
the plane (Re’U{co} = S?) onto the two-sphere target
space spanned by n. Thatis n: S — §2, which is classified
by the homotopy class 7, (S?) € Z. This defines the integer-
valued CP! topological invariant, as

-1 n,

FIG. 3.

1
Q(n) = E/Ré n - 9,n x d,ndxdy. (8)

If n# 0 everywhere (coreless vortex), Q is an integer
number. In a way, Q counts the number of times the texture
of n covers the target two-sphere.

Figure 3 shows the texture of the unit vector n that
corresponds to the vortices in the nematic phase. The left
panel corresponds to the single-quantum vortex displayed
in Fig. 1. It illustrates that the unit vector n wraps the target
two-sphere (once), thus implying this configuration has
unit Skyrmionic charge Q = 1. The right panel shows the
texture corresponding to the bound state of Fig. 2 that
originates in long-range dipolelike forces. Note that this
illustrates the dipole nature of the long-range interaction.
Indeed, the pair of Skyrmions alternates the north (red) and
south (blue) poles of the target sphere.

It is worth noting that various coreless vortices were also
considered to exist in a number of models of multi-
component superconductivity. There are, however, substan-
tial differences in the structure and properties of these
solutions, and they should have distinct experimental
manifestations. For example, in the framework of various
models of p-wave superconductors, it was advocated that
multiquanta coreless vortices may be favored over single-
quanta singular vortices [32-34]. The recent numerical
studies show that two-quanta Skyrmions in the GL models
of a chiral p-wave superconductor are energetically favored,
and hence single-quanta Skyrmions do not form in the
ground state in an external field [27,31,35-37]. Different
types of chiral Skyrmions were also discussed for s + is
superconducting states [31,38,39]. The structure of chiral
Skyrmions is significantly dissimilar compared to the
nematic Skyrmions, since the former have fractional vortices
and magnetic flux pinned on domain walls between different
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Texture of the unit vector n defined as the projection of the superconducting d.o.f. onto the spin-1/2 Pauli matrices. The left

panel shows a single-quanta solution corresponding to Fig. 1, while the right panel corresponds to the bound state displayed in Fig. 2.
Inspection of the single-quanta solution show how n wraps the target two-sphere. The north (respectively, south) pole signals zero of A
(respectively, A_) and thus the position of respective HQVs. From this one, can see structural difference of nematic Skyrmions,
compared to Skyrmions in chiral superconductors [31]. Here the solution has clearly the form of weakly interacting well-separated
Skyrmions with unit topological charge each. By contrast, in the chiral case the Skyrmionic topological charge tends to be relatively

uniformly spread along closed domain walls.
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time-reversal symmetry broken states [40]; thus, they have
very different magnetic field configurations.

The object that we find here should be interesting from
the viewpoint of electronic states. Indeed, HQVs are known
to possess Majorana modes. The spatial separation between
two HQVs in the Skyrmion implies that individual HQV's
may be rather easily stabilized in a mesoscopic sample.

In conclusion, we discussed the topological excitations
in nematic superconductors. We showed that the topologi-
cal excitations are nematic Skyrmions, each of which can
be viewed as a bound state of two spatially separated
half-quantum vortices. The nematic Skyrmions have
orientation-dependent dipolar attractive forces and form
multiquanta bound states, which could be expected to have
clear experimental signatures in structure formation.
Moreover, being coreless, the Skyrmions are expected to
have unusual electronic core-state properties that could
allow the identification of Skyrmionic states using scanning
tunneling microscopy.

The work was supported by the Swedish Research
Council Grant No. 642-2013-7837 and by Goran
Gustafsson Foundation for Research in Natural Sciences
and Medicine. The computations were performed on resour-
ces provided by the Swedish National Infrastructure for
Computing (SNIC) at National Supercomputer Center at
Link6ping, Sweden.
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