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An intriguing phenomenon in topological semimetals and topological insulators is the negative
magnetoresistance (MR) observed when a magnetic field is applied along the current direction. A prevailing
understanding to the negative MR in topological semimetals is the chiral anomaly, which, however, is not
well defined in topological insulators. We calculate the MR of a three-dimensional topological insulator, by
using the semiclassical equations of motion, in which the Berry curvature explicitly induces an anomalous
velocity and orbital moment. Our theoretical results are in quantitative agreement with the experiments.
The negative MR is not sensitive to temperature and increases as the Fermi energy approaches the band
edge. The orbital moment and g factors also play important roles in the negative MR. Our results give a
reasonable explanation to the negative MR in 3D topological insulators and will be helpful in
understanding the anomalous quantum transport in topological states of matter.
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Introduction.—Recently discovered topological semi-
metals are characterized by a negative magnetoresistance
(MR) [1–13], which is rare in nonmagnetic materials. The
negative MR is widely believed to be a signature showing
that a topological semimetal can host the chiral anomaly,
that is, the conservation of chiral current is violated as a
result of the quantization [14–16]. However, in other
systems where the chiral anomaly is not well defined,
e.g., in topological insulators, a negative MR has also been
observed and has created great confusion [17–22]. In this
Letter, we present a quantitative study on the MR of 3D
topological insulators. Using the semiclassical Boltzmann
formalism, we explicitly take into account the correction to
the conductivity from the anomalous velocity induced by
the Berry curvature and orbital moment of the bulk states.
By using the parameters for Bi2Se3, we find that the MR
can be negative when the magnetic field is applied parallel
with the current and in a quantitative agreement with the
experiments (see Fig. 1). Consistent with the experiments,
the negative MR is not sensitive to temperature, as expected
by its semiclassical nature. The negative MR depends on
the Fermi energy, and its magnitude increases when
approaching the band edge. We also find that the MR
depends on the signs of g factors, and may provide an
approach to measure the g factors for these materials. Our
results may give a reasonable explanation to the exper-
imentally observed negative MR in 3D topological insula-
tors, and will be helpful for understanding the anomalous
quantum transport in topological states of matter.
Anomalous velocity.—First, we illustrate that the anoma-

lous velocity induced by the Berry curvature and its
derivative orbital moment is the reason behind the negative

MR. In the experiments of topological insulators, the
negative MR can survive above T ¼ 100 K [19], so
quantum interference mechanisms, such as the weak
localization effect, can be excluded. Moreover, because
of the poor mobility in the topological insulators Bi2Se3
and Bi2Te3 [25], the Landau levels cannot be well formed
up to 6 T in the experiments. In this semiclassical regime,
the electronic transport can be described by the equations of
motion [26]

_r ¼ 1

ℏ
∇k ~εk − _k ×Ωk; _k ¼ −

e
ℏ
ðEþ _r ×BÞ; ð1Þ

where both the position r and wave vector k appear
simultaneously, _r and _k are their time derivatives, −e is
the electron charge, and E and B are external electric and
magnetic fields, respectively. ~εk ¼ εk −m ·B, εk is the
band dispersion, m is the orbital moment induced by the
semiclassical self-rotation of the Bloch wave packet, and
Ωk is the Berry curvature [27].
In the linear-response limit (E ¼ 0), Eq. (1) yields an

effective velocity

_r ¼ ½~vk þ ðe=ℏÞBð~vk ·ΩkÞ�=Dk; ð2Þ

where D−1
k is the correction to the density of states, and

~vk ¼ vk −
1

ℏ
∇kðmk ·BÞ; Dk ¼ 1þ e

ℏ
B ·Ωk: ð3Þ

Because of the Berry curvature, the velocity develops an
anomalous term that is proportional to B. Note that the
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conductivity is the current-current (velocity-velocity) cor-
relation [28], thus the presence of the anomalous velocity is
expected to generate an extra conductivity that grows with
the magnetic field. In other words, the Berry curvature and
its derivative orbital moment may induce a negative MR. It
has been implied that the negative MR in topological
semimetals is related to the Berry curvature [29–31], which
diverges near the Weyl nodes and can make a prominent
contribution. The concern is whether this mechanism is
large enough in topological insulators as those observed in
the experiments, where the relativeMR can exceed -1% in a
parallel magnetic field of several T [17–22]. Later, we will
use a realistic model of topological insulator to show that
the Berry curvature can lead to a negative MR comparable
with the experiments.
Model and conductivity formula.—In the experiments,

the negative MR occurs in bulk samples which are at least
several tens of nanometers thick and the major carriers are
from the 3D bulk states. The 2D surface-state carriers can
be neglected because 2D to 3D is like 0 to infinity. A well
accepted k · p Hamiltonian for the bulk states of 3D
topological insulators is [23,32]

H0¼Ckþ

0
BBB@

Mk 0 iVnkz −iV⊥k−
0 Mk iV⊥kþ iVnkz

−iVnkz −iV⊥k− −Mk 0

iV⊥kþ −iVnkz 0 −Mk

1
CCCA; ð4Þ

where Mk ¼ M0 þM⊥ðk2x þ k2yÞ þMzk2z , Ck ¼ C0 þ
C⊥ðk2x þ k2yÞ þ Czk2z ;Mi, Vi, and Ci are model parameters.
The model describes a 3D strong topological insulator
whenM0M⊥ < 0 andM0Mz < 0 [33]. The model has four
energy bands εnðkÞ near the Γ point, two conduction bands
and two valence bands (see Fig. 2). We will assume that the
Fermi level crosses only the two conduction bands. In
systems with both time- and centrosymmetric symmetries,
the Berry curvature vanishes at every k point in the
Brillouin zone, which is the case in pristine 3D topological
insulators. In the presence of the magnetic field, a nonzero
distribution of the Berry curvature can be induced by the
Zeeman effect that breaks time reversal symmetry. The
Zeeman Hamiltonian reads

HZ ¼ μB
2

0
BBB@

gvzBz gvpB− 0 0

gvpBþ −gvzBz 0 0

0 0 gczBz gcpB−

0 0 gcpBþ −gczBz

1
CCCA; ð5Þ

where μB is the Bohr magneton and gv=c;z=p are Landé g
factors for valence and conduction bands along the z
direction and in the x − y plane, respectively. The
Zeeman energy can induce an anisotropy of the Fermi

FIG. 1. The comparison between the calculated negativeMRand
the experiments at three typical temperatures and current directions
[17–19]. In the calculations, the corrections from both the Berry
curvature Ω and orbital moment m have been taken into account.
The Fermi energyEF (measured from the bottom of the conduction
bands) is a tuning parameter in the numerics. All values ofEF fall in
a reasonable range. The current direction and temperature are from
the experiments. x, y, z in themodel (4) correspond to [100], [010],
and [001] crystallographic directions, respectively. The numeri-
cally calculated MR along the z axis is used to approach the
experimentalMR along the ½114̄� direction byHe et al., because the
projection of ½114̄� on the z axis is over 94%. Other model
parameters are from the k · p calculations [23] and experiments
[24],M0 ¼ −0.169 eV,Mz ¼ 3.351 eVÅ2,M⊥ ¼ 29.36 eVÅ2,
V⊥ ¼ 2.512 eVÅ, Vn ¼ 1.853 eVÅ, C0 ¼ 0.048 eV, Cz ¼
1.409 eVÅ2, C⊥ ¼ 13.9 eVÅ2, the g factors gvz ¼ gcz ¼ 30 and
gvp ¼ gcp ¼ −20.
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surface. But without Ω and m, the anisotropy alone does
not contribute to the magnetoresistance [34].
In our calculation, the relative MR is defined as

MRμðBμÞ ¼
1=σμμðBμÞ − 1=σμμð0Þ

1=σμμð0Þ : ð6Þ

In the semiclassical Boltzmann formalism, the longitudinal
conductivity σμμ is contributed by all the bands crossing the
Fermi energy, and for band n [30] (Sec. S1 of the
Supplemental Material [35])

σμμ ¼
Z

d3k
ð2πÞ3

e2τ
Dk

�
~vμk þ e

ℏ
Bμ ~vνkΩν

k

�
2
�
−
∂ ~f0
∂ ~ε

�
; ð7Þ

where n is suppressed for simplicity, Dk and ~vμk are
given by Eq. (3), ~f0 is the equilibrium Fermi distribution,
the transport time τ is assumed to be a constant in the
semiclassical limit [36]. For the nth band of the
Hamiltonian H, the ξ component of the Berry curvature
vector can be found as Ωξ

nk ¼ Ωμν
nkεμνξ, where ξ, μ, ν stand

for x, y, z, εμνξ is the Levi-Civita antisymmetric tensor, and

Ωμν
nk ¼ −2

X
n0≠n

Imhnj∂H=∂kμjn0ihn0j∂H=∂kνjni
ðεn − ε0nÞ2

; ð8Þ

where H ¼ H0 þHZ. The orbital moment m can be
found as

mμν
nk ¼ −

e
ℏ

X
n0≠n

Imhnj∂H=∂kμjn0ihn0j∂H=∂kνjni
εn − ε0n

: ð9Þ

Figure 2 (and Fig. S1 of Ref. [35]) show that the Zeeman
energy can induce a finite distribution of Ω and m, which
should be zero without the Zeeman energy.
Comparison with negative MR in experiments.—

Figure 1 shows that the numerically calculated relative
MRs (see the numerical scheme in Sec. S3 of Ref. [35]) in
parallel magnetic fields are negative and decrease mono-
tonically with the magnetic field. They can be fitted by −B2

at small magnetic fields and conform to the Onsager
reciprocity MRðBÞ ¼ MRð−BÞ. To justify our numerical
scheme, we also use a tight-binding model [37] to perform
the calculation (Sec. S4 of the Supplemental Material [35]).
The k · p and tight-binding models give the same results at
weak magnetic fields (Fig. S2 of Ref. [35]). Figure 1 shows
a good agreement on the negative MR between the typical
experiments and our numerical calculations. In our calcu-
lations, the Fermi energy EF is a tuning parameter. All
values of EF fall in a reasonable range. The current
direction and temperature are from the experiments and
the model parameters are from the k · p calculations [23]
and experiments [24]. In the experiment by Wang et al.
[17], the temperature is 1.8 K, so the original data (orange
triangles) has a positive MR near zero field due to the weak
antilocalization [38–41]. The competition between the
weak antilocalization and the negative MR leads to a
turning point at around 0.5 T. Thus, the comparison starts
at 0.5 T, as shown by the pink and blue scatters. By
contrast, in the experiments by Wiedmann et al. [19]
and He et al. [18], the temperatures are 29 and 300 K,
respectively, far above the critical temperature (about 10 K
in Bi2Se3) of the weak antilocalization effect [38–41].
Therefore, there are only negative MR and the comparisons
start from 0 T.
Temperature and Fermi energy dependences.—Now we

show more detailed behaviors of the calculated negative
MR. Figure 3 shows that the negative MR does not change
much with temperature. This is consistent with the experi-
ments, showing the semiclassical nature of the negative
MR. Figure 3 also shows that the negative MR becomes
enhanced as the Fermi level approaches the band bottom.
The enhancement of the negative MR near the band edge
can be understood using Fig. 2, which shows that the
Zeeman splitting of the conduction bands is maximized at
the Γ point, about several meV in a magnetic field of 5 T.
The negative MR is contributed by the Berry curvature

FIG. 2. The energy dispersion (top left ky ¼ kz ¼ 0, top right
kx ¼ ky ¼ 0) of the k · p model, and the vector plots of the Berry
curvature Ω (middle) and orbital moment m (bottom) for the
lower conduction band (blue curve). The magnetic field is 5 T.
The parameters are the same as those in Fig. 1.
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from the two conduction bands. In the absence of the
Zeeman splitting, both the Berry curvature and orbital
moment vanish due to time-reversal and inversion sym-
metries. The Zeeman effect can break time-reversal sym-
metry and induce a finite distribution of the Berry curvature
for the conduction bands. Therefore, the MRs increase with
the magnitudes of Zeeman splitting and get enhanced near
the band edge.
Roles of g factors.—We find that the signs of g factors in

the Zeeman coupling determine the signs of MRs quali-
tatively. Moreover, according to Eqs. (8) and (9), the signs
of Ω and m are controlled by the signs of g factors, in
particular, gcz;p when the Fermi level crosses the conduction
bands. As pointed out earlier, the Zeeman splitting is the
largest at the Γ point, therefore the sign of the MR is
determined by the lower band with larger Fermi surface and
the signs of the g factors. We list the relation between the
signs of the MRs and g factors in Tables I and II. The
resulting MRs differs qualitatively with different signs of
gcz;p. Note that gvz;p are irrelevant since we have assumed

that the Fermi level crosses only the conduction bands. In
the experiment, the techniques used so far for topological
insulators, for example, electron spin resonance and quan-
tum oscillations, cannot determine the signs of g factors but
only their absolute values [24,43]. Transport measurements
can determine the sign of the g factor only in specific setups
[44]. Our theoretical calculation therefore provides a clue to
evaluate the sign of g factors.
Roles of orbital moment.—The orbital moment has been

neglected in most of the literature studying the magneto-
transport using the semiclassical formalism [29,30]. As
shown in Refs. [45,46], the orbital moment is essential for
the MR anisotropy in a Weyl semimetal. Moreover, the
correction m · B to εðkÞ can enhance the band separation
and the negative MR. To see the effects of the orbital
moment, Fig. 3 also compares the relative MR in the
presence and absence ofm. We can see the orbital moment
effectively enhances the MRx a few times larger. MRz can
be even positive without m. Therefore, the orbital moment
should be taken into account for quantitatively correct
results.
Discussions.—The semiclassical treatment is applicable

in the regimewhere theLandau levels are notwell formed. In
the quantum limit, where only the lowest band of Landau
levels is occupied and MR depends subtly on scattering
mechanisms [47–49], rather than the Berry curvature and
orbital moment. Therefore, our ambition is limited in the
weak-field limit. The current-jetting effect is usually
induced by inhomogeneous currents when attaching point
contact electrodes to a large bulk crystal and may also
hamper the interpretation of the negative MR data [50]. A
recent work byAndreev and Spivak also has pointed out that
the negative MR may exist without the chiral anomaly [51].
Equations similar to Eq. (2) have been considered from a
more general perspective [52].

FIG. 3. The numerical results for MRxðBx ¼ 5 TÞ and
MRzðBz ¼ 5 TÞ as functions of the Fermi energy EF and
temperature T, in the presence (solid scatters) and absence
(hollow scatters) of the orbital moment m. The parameters are
the same as those in Fig. 1. EF is measured from the bottom of the
conduction bands. There is no qualitative change if using the
parameters from Ref. [42].

TABLE I. The relation between signs (�) of the MRs and g
factors in the z-direction magnetic field.

gvz gcz MRzðBzÞ
þ þ −
− þ −
− − þ
þ − þ

TABLE II. The relation between signs (�) of the MRs and g
factors in the x-direction magnetic field.

gvp gcp MRxðBxÞ
− − −
þ − −
þ þ þ
− þ þ
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