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Electron tomography bears promise for widespread determination of the three-dimensional arrangement
of atoms in solids. However, it remains unclear whether methods successful for crystals are optimal for
amorphous solids. Here, we explore the relative difficulty encountered in atomic-resolution tomography of
crystalline and amorphous nanoparticles. We define an informational entropy to reveal the inherent
importance of low-entropy zone-axis projections in the reconstruction of crystals. In turn, we propose
considerations for optimal sampling for tomography of ordered and disordered materials.
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Electron tomography has now advanced to the pointwhere
up to 100 000 atoms in small crystalline particles can be
located with plausible accuracy [1–9]. Although there are
still details to resolve, this is an important advance for
materials science, particularly for the study of crystalline
particle surfaces, internal defects, and associated strain fields
[4,5,8]. Electron tomography of proteins and virus particles
has also advanced impressively, and it is already a main-
stream tool with well-established protocols [10–12]. The
biological work does not quite achieve true atomic resolution
but instead infers structure from near-atomic-resolution data
and knowledge of the component molecular groups.
These recent successes with crystals have led to the

conjecture that the atomic structures of amorphous materi-
als could now be resolved in three dimensions [5,13]. If
possible, this would represent a major breakthrough. The
structures of amorphous materials are known only at a
statistical level, such as in the form of the radial density
function (RDF) obtained by high-resolution diffraction.
RDFs are effective for revealing short-range order, but they
are less sensitive to medium-range order at 0.5–3 nm length
scales. Fluctuation electron microscopy can reveal the
presence and type of medium-range order, but again only
as a statistical measure [14,15]. Although tomographic
reconstructions of crystals do not appear to rely explicitly
on their crystalline regularity [5], intuitively their periodic
degeneracy should render them easier to solve than dis-
ordered materials. In this Letter, we quantify the relative
difficulty of performing electron tomography on models of
crystals and glasses using an entropic approach.
Two 5.0 nm diameter spheroidal models of silicon were

generated. The first had a cubic-diamond crystalline silicon
structure. The second was extracted from a 100 000-atom
amorphous-Si model made by Barkema and Mousseau
[16], with the density decreased by 4.67% to match that of

the crystalline structure. Both models were trimmed to
3409 atoms. The models were tetrahedrally coordinated in
the interior, with a mean bond distance of ∼0.235 nm. To
gain insight into the essential physics underpinning atomic-
resolution electron tomography, a simplified model is
presented here first, and then the findings are subsequently
applied to realistic electron tomographic reconstructions in
order to verify the predictions of the model.
Projections were first simulated by treating atoms as

idealized points while assuming perfect imaging condi-
tions. Image intensity was proportional to the projected
mass thickness of the spheres intersecting each pixel. The
side length of voxels and pixels in projection images were
identical and fixed at 0.0405 nm. For these pointlike atomic
models, images were assigned 106 electron counts (entire
image), emulating typical shot noise. Models were rotated
about one axis, and projections perpendicular to that axis
were examined. For the crystalline model, two rotation axes
were investigated, the cubic ½001� and ½101� axes, as they
presented a series of different zone axes. For the amorphous
model, a single rotation axis was used, as all axes are
statistically equivalent. We assume that images are recorded
with 100% detection quantum efficiency.
To estimate the relative information, the two-dimensional

(2D) (N × N)-pixel image Ið2Þjk is treated as a projection along
i of a three-dimensional (3D) (N × N × N)-voxel object,

with values Ið3Þijk . Ideally, the goal of tomography is to solve

the Ið3Þijk values unambiguously. Each pixel in an image is the
accumulation of intensities along a column of N voxels.

Thus, Ið2Þjk ¼ P
N
i¼1 I

ð3Þ
ijk . A single projection generally has

insufficient information to solve Ið3Þijk .Wewish to estimate that

ambiguity. Under the positivity constraint, Ið3Þijk ≥ 0; Ið2Þjk ≥ 0,
and using the “stars and bars” method [17], the number of
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ways integer intensity can be distributed among N voxels is

Wjk¼ðIð2Þjk þN−1Þ!=Ið2Þjk !ðN−1Þ!. Treating adjacent pixels
as independent, the total number of arrangements for the
image is W ¼ Q

N
j¼1

Q
N
k¼1Wjk.

An informational entropy, S ¼ lnðWÞ, can be defined
and interpreted as being a measure of the ambiguity of the
3D intensity distribution as constrained by the projection.
S ¼ 0, i.e.,W ¼ 1, corresponds to a unique solution. Using
Stirling’s approximation, we obtain

S ≈
XN
j¼1

XN
k¼1

�
Ið2Þjk ln

�
Ið2Þjk þ N − 1

Ið2Þjk

�

þðN − 1Þ ln
�
Ið2Þjk þ N − 1

N − 1

��
; ð1Þ

which is also appropriate for noninteger intensities. If
intensities are not integers, the gamma function form can

be used for Wjk: Wjk ¼ ΓðIð2Þjk þ NÞ=ΓðIð2Þjk þ 1ÞðN − 1Þ!.
Pixels with Ið2Þjk ¼ 0 contribute zero to S since column jk is
solved unambiguously under the positivity constraint. This
definition of the entropy S does not specify or make
assumptions about the atomicity of the object considered
for tilt-series tomography. As such, no restrictions on the
atom locations within the volume have been imposed on
the calculation of entropy. Rather, S is given in terms of the
image intensities, which can be arranged freely throughout
the volume.
Figure 1(a) (left side) plots the entropic density, S=N3 per

voxel, as a function of the projection angle of the models.
The amorphous model (the solid line) has an approximately

constant trace, whereas the crystalline models (the dashed
lines) exhibit strong dips at the zone axes. Views of the
models at selected angles are inserted in the figure.
Zone-axis views present atoms lined up in columns,

minimizing their projected area and exposing the inter-
column gaps, increasing the number of pixels with zero
intensity. Since no voxel can have negative intensity, all N
voxels along that projection must also have zero intensity
and are solved immediately. Zone-axis views strongly
constrain the solution because they efficiently tell us where
the sparsely populated voxels lie. Amorphous structures
do not have such efficiently eclipsed projections, so they
generally have higher entropy. In Fig. 1(a) the amorphous
entropy (the solid line on the left side) is always higher than
the crystal entropy (the dashed lines). Some off-zone-axis
crystal views, such as those for the tilts about ½001�, can
have entropy comparable to that for the amorphous solid.
The views for tilts about ½101� systematically have lower
entropy than the amorphous particle because the (101)
planes (and the gaps between them), with a spacing of
0.384 nm, are prominently visible throughout the tilt series.
Real data do not have many zero-intensity pixels, so
entropy provides a better metric than a simple count of
the zero-intensity pixels. For the consistent set analyzed
here, the crystalline zone-axis views are inherently more
informative (i.e., have a lower S) than the non-zone-axis
viewing directions or the amorphous views.
Tomography uses multiple views of the object in order to

reduce the ambiguity in the 3D intensity distribution. Each
projection adds information, so both W and S should
decrease as the constraints provided by additional image
projections are applied. In principle, we seek to minimize

(a) (b)(i) (ii) (iii)

(iv) (v) (vi)

FIG. 1. (a) Normalized informational entropy for three models plotted as a function of particle rotation (about the vertical axis). Plots
are mirror symmetric about the 90° abscissa, and just over half of the range of each plot is shown. (Left side) Projection entropies,

SðIð2Þ1 Þ. (Right side) Joint entropies SðIð2Þ1 jIð2Þ2 Þ. Five views of the crystalline model and one view of the amorphous model are shown.
(i),(ii) Crystals rotated 13.6° from the [010] projection about the [001] and [101] axes, respectively. (iii) Random amorphous view.
(iv),(v),(vi) Crystals viewed down the ½010�, ½110�, and ½111̄� zone axes, respectively. (b) Representation of the 3D voxel volume,

showing three perpendicular projections of a particle. The intensity trace along i in the view Ið2Þik is normalized to its maximum value.
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SðIð3ÞjfIð2Þn gÞ, where Ið3Þ is the full 3D voxel space

solution, and fIð2Þn g is the constraining set of 2D projec-
tions. An entropic approach to tomography involves the
application of combinatorial constraints, which does not
appear to be a solved problem for arbitrary projections
[18–23]. Here, we apply an ansatz that will allow us to
estimate the combinatorial constraints provided by two
perpendicular views.
For two perpendicular image projections, Ið2Þjk ¼P
N
i¼1 I

ð3Þ
ijk and Ið2Þik ¼ P

N
j¼1 I

ð3Þ
ijk [the views along i and j,

respectively, with a common k axis—see Fig. 1(b)], the

intensities in the side view Ið2Þik impose a weighting on the
voxels along i, which are summed in the projection shown

in Ið2Þjk . We can think of the structure as being rotated within
the fixed i, j, k grid, and as examining two perpendicular
projections, along i and j [Fig. 1(b)]. The value ofN used in
Eq. (1), is the unweighted number of pixels along i. Using

information from the perpendicular view, Ið2Þik , we replaceN
in Eq. (1) with

Nkhii ¼
XN
i¼1

Ið2Þik =maxiI
ð2Þ
ik ; ð2Þ

where maxiI
ð2Þ
ik is the maximum value of Ið2Þik for a fixed k.

This normalization ensures that Nkhii ≤ N and that no pixel
is assigned a combinatoric weight greater than unity. If a

pixel in Ið2Þik has low intensity, the ambiguity in the intensity

distribution along projection Ið2Þjk is reduced. The corre-
sponding decrease in entropy contribution is effected
here by decreasing N. Although improved estimates of
Nkhii might be obtained by pursuing the methods of
Refs. [18–23], the heuristic presented here has the advan-
tage of simplicity and is more than sufficient to illustrate
our key point about the entropy lowering of the zone-axis

views. The additional information from the Ið2Þik side view

reduces the entropy inferred from the Ið2Þjk projection
alone. Thus, Eq. (1) with Nkhii replacing N represents

SðIð2Þjk jIð2Þik Þ—the entropy of the Ið2Þjk projection given the

information in the perpendicular Ið2Þik view. Although this
solution for the perpendicular-projection problem is
approximate [24], it does exhibit reasonable behavior.
The plots in the right half of Fig. 1(a) show the con-

strained entropy SðIð2Þjk jIð2Þik Þ for the three models (two
crystal orientations and one amorphous). The constrained
entropy for the amorphous model (the solid line) is reduced
and remains approximately constant with angle. The con-
strained entropies of the crystalline models (the dashed
lines) are also reduced, but they are generally higher than
the amorphous entropy, except where perpendicular crystal
zone axes are encountered, where the constrained entropy
falls pronouncedly. The high-entropy situation arises in

crystals because, if a column is tilted such that it barely
overlaps a neighboring column, this local worst-case
scenario is periodically repeated and the whole image
becomes relatively uninformative. These entropic charac-
teristics confirm that, for crystals, the zone-axis views are
the most valuable views for tomographic reconstruction, a
fact already exploited by certain groups [6,8]. This result
suggests that tomography of crystalline materials is inher-
ently easier than tomography of amorphous materials.
To examine this hypothesis, tomographic reconstructions

were performed using the crystal and amorphous models.
Here, we test the significance of low- and high-entropy
projections, though the entropy is not directly used in the
numerical implementation for tomographic reconstruction,
as it arises from the intrinsic order of the object. First,
reconstructions at different spatial resolutions were carried
out with projection data evenly spaced throughout 180° to
examine systematic, qualitative differences between crystal-
line and amorphous solids expected from the entropic
analysis. Then, a set of reconstructions was carried out
with selectively removed projections to establish the role of
low-entropy projections in tomography. Although it is not
the paradigm generally used in tomography, reconstruction
strategies are inherently entropy-reduction procedures. For
atomic-resolution tomography, the solution to the
reconstruction problem is sought in the form of a “gas”
of atoms, of unknown type, number, and location within the
volume. Each image projection acts to constrain the available
volume per atom, with the associated configurational entropy
decreasing as ln ðV=NÞ until an unambiguously frozen
distribution of atoms is reached—that is, V=N is minimized.
To test our findings with more realistic input images, we

simulated scanning transmission electron microscope annu-
lar dark-field images for the three models, emulating the
conditions used in a previous experimental study [4]. To
reduce pixelation noise, projections were first computed as
(1120 × 1120)-pixel arrays, then binned to 140 × 140
pixels. Sixty projections in three-degree steps, with a
sampling of 0.0405 nm per pixel (after binning), were
calculated as diffraction-limited views of the projected
potential. Resolutions ranging between 0.16 and
0.26 nm were simulated, and to match published experi-
ments, the total signal in the (140 × 140)-pixel images was
held at 860 000 counts (entire image), including shot noise
[4]. The resolution was adjusted by changing the recipro-
cal-space diameter of a circular aperture [24]. These
parameters approximate typical experimental conditions
but ignore dynamical scattering and decoherence effects
arising from motions in the structure [30].
Tomographic reconstructions were carried out using a

compressed sensing approach [31], employing a three-
dimensional total-variation minimization methodology and
incorporating a non-negativity constraint [24]. After tomo-
graphic reconstruction, atoms were first identified by cross-
correlation with a three-dimensional Gaussian of comparable
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dimensions to the reconstructed atoms, followed by sub-
sequent refinement by fitting three-dimensional Gaussian
functions at each identified atom position [24].
In both amorphous and crystalline samples, all 3409

atoms were recovered (having interatomic spacings of
0.235 nm) up to microscope resolutions of 0.2 nm, with
the fraction of atoms recovered falling as the resolution
deteriorated (Fig. 2, right axis). Atom centers were iden-
tified to within 10 pm (rms) of the known atom locations
(Fig. 2, left axis). At resolution values greater than 0.2 nm,
the crystalline reconstructions were significantly superior
to the amorphous reconstructions, recovering a greater
fraction of atoms with lower error. By these metrics,
crystalline reconstructions are qualitatively different from
amorphous reconstructions. Notably, the ideal samples
considered here are free of image and tilt-axis misalign-
ments, and of beam damage, experimental artifacts that will
lower experimental reconstruction quality further. Zhu et al.
[13] examined a model amorphous silicate particle and also
concluded that tomography was possible. In practice,
silicates are vulnerable to electron beam damage, and such
specimen motions may ultimately be the limiting factor for
tomographic reconstruction of amorphous materials.
Broadly, and ignoring such displacement decoherence
effects [30], for a given targeted recovery quality, crystal-
line reconstructions are systematically of higher quality,
consistent with expectations from Fig. 1(a). Although the
results are not presented here, the above conclusions hold
for reconstructions of a crystal containing an oblique
stacking fault. Moreover, isolated point defects do not
substantially alter the entropic characteristics of the pro-
jection data, enabling the distinction of a vacancy in a
crystalline particle from as few as eight projections [24].
Entropic analyses and tomographic reconstructions with
larger particles (>45 000 and >100 000 atoms) showed
similar behavior [24].

In order to specifically probe the relationship between
reconstruction quality and the low-entropy projections used
as input data, additional reconstructions were carried out
where projections at tilt angles corresponding to (I) low-
entropy projections or (II) high-entropy projections in the
crystalline sample were selectively removed from both
crystalline and amorphous samples [24]. Here, a single
rotation axis (z½001�) was selected, exhibiting typical crys-
talline characteristics in the entropic analysis (Fig. 1).
Figure 3 shows orthoslices (two-dimensional planes
extracted from the three-dimensional reconstruction volume)
for four input data sets (crystalline and amorphous for each
of two cases). When 12 low-entropy projections were
removed from the tilt-series input data, the crystalline sample
failed to recover atoms located in the center of the particle,
comprising in total ∼40% unrecovered atoms [Fig. 3(a)]. By
contrast, the amorphous sample allowed for full recovery of
all atoms with 48 of the original 60 projections as input data
[Fig. 3(b)]. In the second case, using only 12 low-entropy
projections, the crystalline sample enabled recovery of 3406
atoms (99.9%), with errors in atom positions comparable
to the reconstruction using the full 60-projection tilt series
[11 pm; see Fig. 3(c)]. However, ∼40% fewer total atoms
were identified in the amorphous sample with significant
errors in atom positions (72 pm), and the recovered atoms
included “false positive” atom identifications [Fig. 3(d)].
Analogous tests with available experimental data showed
similar behavior [32]. Taken together, these results reveal the
critical role that low-entropy, low-order zone-axis projec-
tions play in tomographic reconstruction with accurate atom
identification and precise atom location. For amorphous

FIG. 2. Reconstruction quality of simulated crystalline and
amorphous nanoparticles as a function of image resolution. (Left
axis) Root-mean-square error of reconstructed atomic coordi-
nates. (Right axis) The fraction of atoms recovered. Solid markers
are for crystal reconstructions, open markers for the amorphous
reconstruction.

FIG. 3. Two-dimensional x-y planes (“orthoslices”) from the
centers of the reconstruction volumes for (a) crystalline and
(b) amorphous samples using 48 “non-zone-axis” projections
(only projections at angles corresponding to high-entropy crys-
talline projections). (c),(d) Orthoslices from the centers of the
reconstruction volumes for (c) crystalline and (d) amorphous
samples using only 12 “zone-axis” projections (only angles
corresponding to low-entropy crystalline projections).
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samples, a much larger number of input projections is
required for comparable reconstruction quality. In practice,
disruption of amorphous materials by the electron beam may
prove to be a limitation [30], as it is for biological materials.
Our results indicate that tomographic reconstruction of
amorphous materials will not be as easy as that for crystals.
The structure in a sample inevitably determines the

sensing-sampling relationship in tomography. This concept
has seen highly successful application in compressed sens-
ing methods where particular relationships between a
sensing scheme (e.g., projection imaging) and a sampling
protocol (e.g., the number or spacing of tilt angles) enables
recovery from highly undersampled measurements [31].
However, the principle is more general and is applicable
regardless of the particular reconstruction algorithm, whether
or not it makes use of compressed sensing. The structure of
such signals has also been noted in work on x-ray diffraction
where the isolated distribution of signals in Bragg peaks
for crystalline samples or the continuous distribution of
signals in amorphous samples plays an important role [33].
Here, we have shown that in tomography at atomic resolution,
the order of crystalline samples gives rise to inherent structure
in the recorded real-space projection data, a significant
departure from the amorphous case. Consequently, these
problems are distinct recovery problems, best solved using
methods suited to the particular characteristics of the recorded
signals. Crucially, the informational entropy provides a
description of the input data characteristics for understanding
the role of individual projections in determining the
reconstruction quality for atomic-resolution electron tomog-
raphy.We note that low-entropy views becomemore common
as crystallite size decreases.
Deviations from the simple crystalline and amorphous

systems considered here, in the form of crystal defects and
multielement compositions, will benefit from extensions of
the proposed entropic analysis as a means of examining
projection data. By examining a tilt-series data set, entropic
analysis provides a way of determining the important
projections for the reconstruction, facilitating emphasis
during data acquisition for high signal and reduced noise
at these sample orientations. These findings, moreover, are
applicable to other length scales because the entropy is
determined by structure in a sample, and atomic ordering is
just one length scale where such structure may have an
effect on tomographic reconstructions. Entropic analysis
will also inform layered or zeolitic structures, particle
aggregates, metamaterials, and other ordered samples
examined by electron and x-ray tomography.
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