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We numerically compute the flow of an electrically conducting fluid in a Taylor-Couette geometry where
the rotation rates of the inner and outer cylinders satisfy Q,/Q; = (r,/r;)~>/% In this quasi-Keplerian
regime, a nonmagnetic system would be Rayleigh stable for all Reynolds numbers Re, and the resulting
purely azimuthal flow incapable of kinematic dynamo action for all magnetic Reynolds numbers Rm. For
Re = 10* and Rm = 10°, we demonstrate the existence of a finite-amplitude dynamo, whereby a suitable
initial condition yields mutually sustaining turbulence and magnetic fields, even though neither could exist
without the other. This dynamo solution results in significantly increased outward angular momentum
transport, with the bulk of the transport being by Maxwell rather than Reynolds stresses.
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The magnetic fields of planets, stars, and entire galaxies
are created by dynamo action, in which the motion of
electrically conducting fluid stretches and thereby amplifies
some original seed field. The details vary widely for
different objects [1-4], but it is generally believed that
most sufficiently complicated fluid flows can act as
dynamos, at least if the electrical conductivity is large
enough. The onset of dynamo action then becomes a linear
instability problem, with the electrical conductivity incor-
porated into the so-called magnetic Reynolds number Rm
as the control parameter. Once Rm exceeds some critical
value, any infinitesimal seed field will grow exponentially
in time. This process continues until the field is so strong
that its associated Lorentz force alters the original flow and
eventually stops further field amplification.

One astrophysical category where this process may not
work quite so simply is accretion disks. The difficulty is that
a Keplerian angular rotation profile Q(r) ~ r=3/2 fails the
requirement to be “sufficiently complicated.” A flow con-
sisting of only the single component U, = €r is so simple
that it will never yield dynamo action, no matter how large
Rm is taken to be. To explain the magnetic fields of accretion
disks, the flow must, therefore, be more complicated than
just the large-scale Keplerian rotation profile. The generally
accepted explanation is that there is also small-scale turbu-
lence [5]. This naturally raises the question regarding the
origin of this turbulence, especially since the familiar
Rayleigh criterion [6] states that flows with angular momen-
tum Qr? increasing outward are hydrodynamically stable.
The Rayleigh criterion is admittedly a purely linear result
and, thus, does not exclude the possibility of a nonlinear,
finite-amplitude instability. Nevertheless, there are both
experimental [7,8] and numerical [9-13] results which
suggest that Keplerian rotation profiles are indeed stable
even with respect to finite-amplitude perturbations.
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There is actually an easy way to bypass the Rayleigh
criterion, namely, by including magnetic fields. This leads
to the magnetorotational instability (MRI) first discovered
in the Taylor-Couette context in 1959 [14] and applied to
accretion disks in 1991 [15]. By using the tension in
magnetic field lines to transfer angular momentum between
fluid parcels, a key ingredient in the derivation of the
Rayleigh criterion is invalidated, namely, that without
magnetic fields, angular momentum is conserved not only
globally but also locally on individual fluid parcels. The
result is that in the presence of magnetic fields it is only the
angular velocity Q rather than the angular momentum Qr?
which needs to be outwardly decreasing for the flow to be
unstable. Keplerian profiles Q ~ r~3/2 are, thus, Rayleigh
stable but MRI unstable. Since its rediscovery in the
astrophysical context, there has been enormous further
interest in the MRI [5], including also the possibility of
obtaining it and variants of it experimentally [16-20].

There is, of course, one remaining difficulty before the
MRI can be invoked to explain the magnetic fields of
accretion disks, in that it essentially leads to a “chicken-
and-egg” type situation. If a (sufficiently strong) magnetic
field were present, the disk would almost invariably be
turbulent, via the MRI, which would likely yield a
sufficiently complicated flow to act as a dynamo.
However, before the dynamo is operating, where does
the initial magnetic field come from? One possibility is that
the entire dynamo process is a finite amplitude rather than a
linear instability (as encountered also in other contexts,
e.g., Refs. [21-23]). That is, an infinitesimally small seed
field would yield neither turbulence nor a dynamo, but
some sufficiently strong initial field could yield a configu-
ration that permanently maintains both the turbulence and
an associated magnetic field. The possibility of a dynamo
of this type has been explored very extensively in local
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shearing-box simulations [24-31], but not in global cal-
culations. In this Letter, we provide numerical evidence for
the existence of such a finite-amplitude dynamo in a global
Taylor-Couette geometry, with the inner and outer cylin-
ders’ rotation rates set to be in the Rayleigh-stable regime.

We start with a Taylor-Couette system having nondimen-
sional inner and outer cylinder radii ; =1 and r, = 2.
Periodicity is imposed in the axial direction, with length
L, = 1.4. This periodicity in the axial direction is the most
obvious difference between Taylor-Couette flows and
accretion disks. The rotation rates of the two cylinders
are fixed to satisfy Q,/Q; = (r,/r;)™>/? = 0.35, thereby
matching Q ~ r~3/2 at the boundaries to constitute what is
known as a quasi-Keplerian system. In particular, the
resulting basic state flow profile is Rayleigh stable in the
purely hydrodynamic regime. By contrast, previous
numerical Taylor-Couette dynamos [32-35] have been in
the regime where the flow is already hydrodynamically
unstable and is, thus, sufficiently complicated to work even
as a kinematic dynamo. There have also been two liquid
sodium dynamo experiments [36,37] in cylindrical
geometry but again in a regime that does not rely on
finite-amplitude instabilities.

The governing equations for the fluid flow U and the
magnetic field B are

a—U+U-VU:—le+uV2U+L(VxB)xB,
ot p HopP
%—I::nVZB—ka(UXB),

together with V- U = V - B = 0. The associated boundary
conditions at both cylinders are no slip for U and insulating
for B. Here, p is the pressure, p is the density, p the
permeability, v the viscosity, and # the magnetic diffusivity
(inversely proportional to the electrical conductivity).

We nondimensionalize length by r;, time by Q;!, U by
Q;r;, and B by Q;r;\/puy. The relevant nondimensional
parameters measuring the rotation rates are the ordinary
and magnetic Reynolds numbers

Re

79,-1‘12 Q.r2
== .

The ratio Rm/Re = v/# is a material property of the fluid
known as the magnetic Prandtl number Pm. Liquid metals
all have Pm < O(107%), but astrophysical plasmas can have
a much greater range, including Pm > O(1).

In previous work [38-40], we considered turbulent
Taylor-Couette flows in the presence of an externally
imposed azimuthal magnetic field By(r;/r)é,, which
guarantees the existence of an instability, the so-called
azimuthal magnetorotational instability [41,42]. As our
finite-amplitude initial condition here, we took a turbulent
solution from this work, with Re= Rm = 10*. The
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FIG. 1. Magnetic (left) and kinetic (right) energies of the runs at
Rm = 10* (dashed blue lines) and Rm = 10> (solid red lines), as
functions of time. The short line segments for ¢ < 50 correspond
to the initial condition before the external field is switched off
[39]. For the kinetic energies, the laminar profile has been
subtracted from U to better illustrate the relaminarization of
the Pm = 1 run.

external field was then switched off, and two separate runs
were performed. For the first, the two Reynolds numbers
were both kept at 10*; for the second, the magnetic
Reynolds number was increased to 10°. The resolution
for the first run was 280 points in radial direction, 600
azimuthal and 400 axial Fourier modes. For the second
run the resolution was 480 points, 1024 azimuthal and
512 axial modes. For a full description of the numerical
code, see Ref. [38].

Figure 1 shows how the magnetic and kinetic energies
for the two runs evolve in time. The Rm = 10* case is
clearly not a dynamo—after some minor initial transients,
the magnetic energy starts to decay, while U relaxes back
toward the basic quasi-Keplerian profile. By contrast, the
Rm = 10° case shows an immediate dramatic increase in
the magnetic energy followed by saturation to a statisti-
cally steady state. After some quite substantial transient
adjustments, the flow also equilibrates to a statistically
steady state.

Figure 2 shows snapshots of U and B for the Rm = 103
dynamo. Both are seen to exhibit strong small-scale
structures in all three directions. The meridional slices
indicate a certain concentration of structures toward the
inner boundary but otherwise no clearly discernible boun-
dary layer structure. As one would expect based on these
snapshots, the energy spectra are not concentrated at the
largest scales but instead contain substantial energy out to
quite large wave numbers. As shown in Fig. 3, the spectra
in both z and ¢ are almost flat over 1 or even 2 orders of
magnitude in wave number before dropping off.

Closely related to these spectra are the length scales

JUG%av
J(VxU)?av’

2 2 [ B2dv
v B [(VxB)XdV’

where the integrals are over the entire volume. The
instantaneous values from the end of the run give [;; =
4.5x 1072 and Iz = 9.8 x 1073, broadly consistent with
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FIG. 2. The top row shows different views of U; from left to right, the four panels show isosurfaces of U, = £0.01, contours of U, and
U, on slices in the (r, z) meridional plane, and contours of U on the unrolled cylinder at midgap (r = 1.5). The bottom row shows

equivalent snapshots of B.

the spectra in Fig. 3, as well as the O(Rm~!/2) length scale
on which a small-scale dynamo would be expected to
operate [43]. Note also that the diffusive time scales
corresponding to these length scales, Rel?, ~20 and

0 101

3

10° 10

Wave number

FIG. 3. Time-averaged kinetic (black) and magnetic (green)
energy spectra versus axial (solid) and azimuthal (dashed) wave
number for the Rm = 10° dynamo case. These spectra are
computed at midgap (r = 1.5) only, but spectra averaged over
the entire volume are qualitatively similar.

Rm/% ~ 10, are both very short compared with the t =
1500 integration time in Fig. 1, providing further evidence
that this is indeed a permanent dynamo and not just
remaining transients.

A quantity of particular interest in the accretion disk
context is the associated outward angular momentum
transport, since it is this which determines the rate at
which matter actually accretes onto the central object. In
the Taylor-Couette context, this angular momentum trans-
port is very easily quantified simply by considering the
torques on the inner and outer cylinders (where the time-
averaged torques are necessarily equal and opposite in a
statistically steady state). Figure 4 shows how the norma-
lized torque (that is, scaled by its value for the nonmagnetic
laminar U y-only profile) evolves in time. For Rm = 104, it
very quickly tends to 1, consistent with the result in Fig. 1
that U simply relaxes back toward the basic state. By
contrast, for Rm = 10, there are again substantial initial
transients, but eventually the torque settles in to O(10)
times greater than the laminar value.

There are two other points worth mentioning in com-
parison with Fig. 1. First, whereas in Fig. 1 the kinetic
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FIG. 4. Normalized torque as a function of time for Rm = 10*
(dashed) and Rm = 10° (solid). The short black segment for
t < 50 again corresponds to the initial condition.

energy ultimately settled in to a value quite similar to the
initial condition with the imposed field, the torque settles in
to values around twice as large as for the initial condition.
Second, after seemingly settling in, the torque exhibits
fluctuations of similar intensity to either the kinetic or
magnetic energies, if values are normalized about the
maximum.

These torque results already indicate that the turbulent,
magnetic state at Rm = 10° is very effective at angular
momentum transport. A way of further quantifying this is
shown in Fig. 5(a), where we compute the Maxwell,
Reynolds, and viscous stresses. We see that throughout
the bulk of the interior the Maxwell stress dominates, with
the Reynolds stress accounting for only around 10%. This
agrees with the point noted earlier that the magnetorota-
tional instability works precisely by harnessing the tension
in magnetic field lines to transport angular momentum.

Next, Fig. 6 shows how the presence of turbulence
modifies the time-averaged Uy profile and how it compares
with the original quasi-Keplerian profile. The presence of
boundary layers is as expected; since the torque right at the
boundaries is purely viscous, if the torques in Fig. 4 are
~10 greater than the laminar values, then the gradients
(d/dr)Q at the boundaries must also be greater by the same
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FIG. 5. Both panels show the time-averaged stresses as func-
tions of radius, with the Maxwell stress green dashed, Reynolds
black solid, and viscous red dash-dotted lines. The left panel is for
the true Taylor-Couette system, where the U, profile is allowed to
adjust as in Fig. 6. The right panel is for the system where the
U, profile is forced to remain quasi-Keplerian throughout the
interior.

amount. Note also how the viscous stresses in Fig. 5(a)
dominate within the boundary layers. It is not entirely clear
though why the solution adjusts to have U, so uniform in
the interior, as opposed to the angular velocity Q (or some
intermediate quantity U, /rd, with 0 < g < 1). See, also,
Ref. [44] who explore related issues in nonmagnetic
Taylor-Couette flows.

Returning finally to our original motivation in terms of
astrophysical accretion disks, we note that at least some
aspects of the nonlinear equilibration must be quite differ-
ent there from what is seen in Fig. 6. In particular, in
accretion disks, the angular velocity profile cannot possibly
deviate as strongly from the basic Keplerian profile; if the
mass of the central object is dominant, its gravity will
always enforce a profile extremely close to Q ~ r~3/2, This
motivated us to perform an additional calculation in which
the azimuthally and axially averaged flow profile was
forced to remain identical to the laminar quasi-Keplerian
profile, by adding a suitable body force in the Navier-
Stokes equation which always drives these components of
U back to the desired flow profile. (Numerically, this is
done by simply not time stepping those components of U.)
The dynamo continued to exist in this calculation and even
has levels of Maxwell and Reynolds stresses broadly
similar to the previous ones, as seen in Fig. 5(b). (For
such a forced flow, there are also stresses arising from the
additional body force, but these do not affect the relative
Maxwell, Reynolds, and viscous contributions.)

These forced-flow results suggest that the dynamo
presented here is not specific to Taylor-Couette flows
but is instead generic to any Rayleigh-stable differential
rotation flows, including those in accretion disks. There are,
of course, other important differences between Taylor-
Couette geometry and accretion disks, including the boun-
daries in both radial and axial directions, stratification,
compressibility, etc. [5]. Nevertheless, the generic existence
of such a dynamo in Rayleigh-stable flows suggests that
accretion disks can operate with self-sustained magnetic
fields, without relying on fields emanating from the central
object (contrary to the shearing-box results of Ref. [45],
who suggested that angular momentum transport is neg-
ligible in the absence of externally imposed axial fields).
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FIG. 6. The left panel shows the time-averaged U, radial
profile for the dynamo at Rm = 103 (red solid), in comparison
with the laminar quasi-Keplerian profile (black dashed). The right
panel shows the corresponding angular velocities Q = U/ r.
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Further work will map out the full range in parameter space
where this dynamo exists and quantify how the angular
momentum transport varies with Re and Rm, as well as the
axial length L, which has been shown to be an important
parameter in shearing-box simulations [31].
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