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We study the dynamics of an array of nearest-neighbor coupled spatially distributed systems each
generating a periodic sequence of short pulses. We demonstrate that, unlike a solitary system generating a
train of equidistant pulses, an array of such systems can produce a sequence of clusters of closely packed
pulses, with the distance between individual pulses depending on the coupling phase. This regime
associated with the formation of locally coupled pulse trains bounded due to a balance of attraction and
repulsion between them is different from the pulse bound states reported earlier in different laser, plasma,
chemical, and biological systems. We propose a simplified analytical description of the observed
phenomenon, which is in good agreement with the results of direct numerical simulations of a model
system describing an array of coupled mode-locked lasers.
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Nonlinear temporal pulses and spatial dissipative local-
ized structures appear in various optical, plasma, hydro-
dynamic, chemical, and biological systems [1–13]. Being
well separated from each other in time or space, these
structures can interact locally via exponentially decaying
tails. As a result of this interaction, they can form bound
states, known also as “dissipative soliton molecules”
[5,10,11,14], characterized by fixed distances and phase
differences between individual pulses. Such bound states
can emerge due to the oscillatory character of the inter-
action force which is related to the presence of oscillating
tails. Another scenario occurs in the case of monotonic
repulsive interaction when either the pulse tails decay
monotonically or a strong nonlocal repulsive interaction
between the pulses is present. In this case, the pulses tend to
distribute equidistantly in time or space, leading to periodic
pulse trains [15–18], which, in contrast to closely packed
bound states, exhibit large distances between the conse-
quent pulses. Recently, it was shown that pointwise non-
locality may also lead to the formation of molecules
composed by pulses which are globally bounded but locally
independent [19].
In this Letter, we show that, even in the case when the

pulses in an individual system exhibit strong repulsion, the
formation of bound pulse trains can be achieved by
arranging several systems in an array with nearest-neighbor
coupling. As a result, the pulses interact not only within one
system but also with those in the neighboring ones, leading
to a different balance of attraction and repulsion. More
specifically, we demonstrate that this array can produce a
periodic train of clusters consisting of two or more closely
packed pulses with the possibility to change the interval

between them via the variation of the coupling
phase parameter. Such bound pulse trains cannot exist in
a solitary pulse-generating systems and hence are different
from pulse bound states previously observed in, e.g.,
Refs. [14,20–33].
To clarify the origin of this phenomenon for the case of

two coupled systems, we apply a multiscale method to
derive a reduced system of equations governing the slow
time evolution of the phase difference and distance between
the two interacting pulse trains. Furthermore, we demon-
strate that the observed pulse train states can coexist with
the in- and antiphase synchronized regimes in which all
pulses have identical amplitudes and the phases of the
adjacent pulses are either in or antiphase. Note that, in
contrast to the pulse bound state regime, such types of in-
and antiphase synchronization are well known in coupled
oscillator networks [34,35]. To illustrate our general result,
we focus on a particular example of an array of mode-
locked lasers coupled via evanescent fields in a ring
geometry; see Fig. 1(a). Such lasers are widely used
for the generation of short optical pulses with high
repetition rates and optical frequency combs suitable for
numerous applications [37]. Combining many lasers into
an array, one can achieve a much larger output power
and substantially improve the characteristics of the output
beam by synchronizing the frequencies of the individual
lasers [38].
We assume that each individual array element generates

a periodic pulse train, and it is described by a system of
delay differential equations (DDEs). Then the dynamics of
an array of N such elements is given by the set of
symmetrically coupled systems of nonlinear DDEs:
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duj

dt
¼ F½ujðtÞ;ujðt − τÞ� þ Cðuj−1 þ ujþ1Þ; ð1Þ

where uj, j ¼ 1;…; N, is the state variable describing the
jth system and C is the coupling matrix. We assume that in
the absence of coupling, C ¼ 0, the system (1) generates
periodic pulses with the period close to the delay time τ.
Here we consider a particular model for a passively mode-
locked laser [36] for the array elements. In this case,
u ¼ (AðtÞ; GðtÞ; QðtÞ)T , where A denotes the complex
electric field amplitude whereas G and Q are saturable
gain and loss, respectively. The components of the
function F are F1 ¼ −γAþ γ

ffiffiffi
κ

p
RAðt − τÞ, F2 ¼

G0 − γgG − e−QðeG − 1ÞjAðt − τÞj2, and F3¼Q0−γqQ−
sð1−e−QÞjAðt−τÞj2, with R¼exp½ð1−iαgÞG−ð1−iαqÞQ�=
2−iϑ. The parameter γ represents the spectral filtering
bandwidth, κ is the attenuation factor describing linear
nonresonant intensity losses per cavity round trip, G0 is the
pump parameter, which is proportional to the injection
current in the gain region, Q0 is the unsaturated absorption
parameter, γg and γq are the carrier relaxation rates in the
amplifying and absorbing sections, and s is the ratio of the
saturation intensities in these two sections. In what follows,
we limit our analysis to the physically meaningful situation
when the lasers are coupled via evanescent fields and,
hence, the coupling matrix C has only a single nonzero
element C11 ¼ ηeiφ, where η is the coupling strength and φ
is the coupling phase. Note that the choice of a set of DDEs
as a model system is particularly motivated by the fact that
DDE models are proven to be very good test-bed systems
for revealing various phenomena in spatially extended
systems [39–41].
In the absence of coupling, η ¼ 0, for the chosen

parameter values each laser operates in a stable funda-
mental passive mode-locking regime with a single sharp
pulse per cavity round trip time [36]. This regime can be
represented in the form with AjðtÞ ¼ Aðtþ θjÞeiωtþiϕj ,
Gj ¼ Gðtþ θjÞ, and Qj ¼ Qðtþ θjÞ, where AðtÞ, GðtÞ,
andQðtÞ are periodic in time with the period T close to the
delay τ, and arbitrary constant phase shifts θj and ϕj. For

small coupling η, the time shifts θj and the phase shifts ϕj

start evolving slowly in time due to the interaction between
the lasers, and, as a result, a synchronized state can be
achieved. In particular, due to the index shift symmetry of
the system, solutions with identical amplitudes jAjðtÞj ¼
jAðtÞj and a constant phase shift between the adjacent
lasers υjþ1 − υj ¼ 2πl=N, l ¼ 0;…; N − 1 [42–47], are
observed. The simplest types of the synchronized regimes
are complete in-phase synchronization (l ¼ 0) and anti-
phase synchronization (l ¼ N=2 for an even number of
lasers N). Note that there is also a potentially interesting
“noninvasive” case l ¼ N=4, for which the coupling
vanishes: Aj−1 þ Ajþ1 ¼ 0. For odd values of N, however,
the antiphase and noninvasive synchronization regimes do
not exist.
Stability regions for the in-phase and antiphase

synchronized mode-locked solutions of the system of four
lasers obtained using the master stability function approach
[48] in the ðφ; ηÞ plane of coupling parameters are shown in
Fig. 2(a). The form of the coupling implies that these
stability regions are shifted relative to each other by π with
respect to the coupling phase angle φ.
Along with the synchronized solutions, a new bound

pulse train regime is observed for the parameter values
shown in Fig. 2(b). In this regime, lasers pulse sequentially
on the ring one after another, as shown in Fig. 1(b), while
each of the lasers stays close to its fundamental mode-
locked regime with a period τ0 close to the delay time τ.
The bound pulse train regime emerges from the synchron-
ized solution at the supercritical pitchfork bifurcation
[see line P in Fig. 2(b)]. The observed regime can be

FIG. 2. (a) Bifurcation diagram in coordinates ðφ; ηÞ for the
synchronized solutions in the ring array with N ¼ 4. Left- and
right-inclined hatching indicates the stability regions for the in-
phase (l ¼ 0) and antiphase (l ¼ 2) synchronized solutions. Red
lines P correspond to pitchfork bifurcations of the in-phase
synchronized solution. (b) Bifurcation diagram for the bound
state B1 (cf. Fig. 4) in the plane ðφ; ηÞ. The same as in panel (a),
in addition, the light gray area shows the stability domain of the
bound state. The red line P corresponds to a supercritical
pitchfork bifurcation of the in-phase synchronized solution
leading to the bound pulse train regime, the blue line F
corresponds to a fold bifurcation where stable and unstable
branches of bound pulse train solutions merge and disappear, and
the dashed black line T shows the first torus bifurcation of the
pulse bound state which leads to a modulation in a form of slight
change of the pulse shapes from one pulse period to another.

FIG. 1. (a) Schematic representation of a ring array of nearest-
neighbor coupled mode-locked lasers. (b) Laser intensities in the
bound pulse train regime in a ring of four lasers calculated for
η ¼ 0.5 and φ ¼ 3.0. Different colors correspond to different
lasers. Other parameters: γ ¼ 33.3, κ ¼ 0.1, αg ¼ 2.0, αq ¼ 3.0,
ϑ ¼ 0, G0 ¼ 2.0, Q0 ¼ 4.0, γg ¼ 0.0133, γq ¼ 1, s ¼ 25, and
τ ¼ 1.875 (similarly to Ref. [36]).
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better visualized using the so-called pseudospatial coor-
dinates plane ðT; σÞ [41], where σ ¼ tmodτ0 is the original
fast time and T ¼ t=τ0 is the slow time (number of round
trips, τ0 ¼ τ þ 0.03); see Fig. 3(a). We observe that pulses
that were initially distributed on the interval σ ∈ ½0; τ0� start
to interact and finally form a bound cluster. The distance
between the pulses in this cluster can be controlled by
changing the coupling phase φ, which determines the
relative phase of the interacting pulse tails.
A similar bound pulse train for the case of two coupled

lasers is shown in Fig. 3(b). In what follows, we
investigate the origin of this bound state by applying
the multiscale method [49–51] to the two-laser system in
order to find the reduced system governing the slow
dynamics of the time separation between the pulses
and their phase differences. The generalization of this
approach to the case of N coupled lasers is discussed in
Supplemental Material [52].
To apply the multiscale method to Eq. (1), we consider

the limit of small coupling, η ¼ εμ with a small parameter
ε, and search for the solution of system (1) in the form
Ajðt0; t1Þ¼ feiϕjðt1ÞA½t0þθjðt1Þ�þ εA1

jðt0; t1Þgeiωt0 , Gj¼
G½t0þθjðt1Þ�þεG1

jðt0;t1Þ, Qj¼Q½t0þθjðt1Þ�þεQ1
jðt0;t1Þ.

Here A, G, and Q are a τ0-periodic solution of the
unperturbed system (mode-locked regime in an uncoupled
laser), A1

j ,G
1
j , andQ

1
j describe first-order corrections due to

the coupling, and t0 ¼ t and t1 ¼ εt are fast and slow times,
respectively.
In the following, we explain how the reduced system (7)

for the time separation Θ ¼ θ2 − θ1 between the pulses and
the phase difference Φ ¼ ϕ2 − ϕ1 between pulse peaks can
be obtained. For this purpose, the ansatz above is sub-
stituted into (1), and the resulting system is expanded in
orders of ε (see [49–51] for details). Collecting the first-
order terms in ε, we obtain the following linear system of
DDEs for the perturbations Sj ¼ ðReA1

j ; ImA1
j ; G

1
j ; Q

1
jÞT :

− _Sj þ a1ðtÞSjðtÞ þ a2ðtÞSjðt − τÞ
¼ a3 _θj þ a4 _ϕj þR½ð−1ÞjΘ; ð−1ÞjΦ�; j ¼ 1; 2; ð2Þ

with linear operators a1;2 and vector functions a3;4 depend-
ing only on the unperturbed pulse solution. Expressions for
a1;2;3;4 and R are given in Supplemental Material [52].
The solvability condition of the linear nonhomogeneous

system (2) requires that its right-hand side is orthogonal to
the neutral (or Goldstone)modes of the adjoint homogenous
system [53]. In the case of a small coupling coefficient,
η ≪ 1, these modes can be approximated by a linear
combination of the neutral modes of pulsed solutions of
two uncoupled laser equations, ψ†

j and ξ†j with j ¼ 1, 2,
related to the phase shift and the time-shift symmetries,
respectively. These modes can be found numerically (see,
e.g., [49–51]). The orthogonality of the right-hand side of (2)
to ψ†

1;2 with respect to the inner product
R
T
0 fa3 _θj þ a4 _ϕj þ

R½ð−1ÞjΘ; ð−1ÞjΦ�gψ†
jðtÞdt ¼ 0 leads to the system of two

ordinary differential equations

pψ
_θ1 þ qψ _ϕ1 ¼ μRψ ðΘ;ΦÞ; ð3Þ

pψ
_θ2 þ qψ _ϕ2 ¼ μRψ ð−Θ;−ΦÞ; ð4Þ

where coefficients pψ , qψ , and Rψ are given by the
corresponding inner products (cf. Supplemental Material
[52]). Subtracting Eqs. (3) and (4) from one another, one
obtains the equation for the phase difference Φ and time
separation of the pulses Θ:

pψ
_Θþ qψ _Φ ¼ μ½Rψð−Θ;−ΦÞ − RψðΘ;ΦÞ�: ð5Þ

In the same way, the orthogonality conditions to the modes
ξ†1;2 lead to the equation

pξ
_Θþ qξ _Φ ¼ μ½Rξð−Θ;−ΦÞ − RξðΘ;ΦÞ�: ð6Þ

Solving now (5) and (6) for _Θ and _Φ, we obtain the reduced
system of two ordinary differential equations for the slow
time evolution of Θ and Φ:

_Θ ¼ η cos ½Φþ ΔΘðΘÞ�fΘðΘÞ;
_Φ ¼ η sin ½Φþ ΔΦðΘÞ�fΦðΘÞ; ð7Þ

where fΘ;ΦðΘÞ ≥ 0. The specific shape of the right-hand
side of (7) is due to the fact that the function RψðΘ;ΦÞ
contains only a first Fourier harmonic in Φ. As a result, the
dependence on Φ is a linear combination of sinðΦÞ and
cosðΦÞ that can be represented as (7). More details are given
in Supplemental Material [52].
The bound pulse train states correspond to the fixed

points of (7). These points are defined by the condition
cos ½Φþ ΔΘðΘÞ� ¼ sin ½Φþ ΔΦðΘÞ� ¼ 0, which implies
that one of the two conditions should be satisfied:ΔΘðΘÞ ¼
ΔΦðΘÞ or ΔΘðΘÞ ¼ ΔΦðΘÞ þ π. The first condition cor-
responds to the saddles of the system (7), while the second
equation corresponds either to nodes or to foci. These
equilibria correspond to pulse bound states of Eq. (1). Note

(a) (b)

FIG. 3. (a) Space-time diagram of the bound pulse train regime
in a four-laser array in coordinates ðT; σÞ, where σ ¼ tmodτ0 is
the original fast time and T ¼ t=τ0 the slow time (τ0 ¼ 1.9054).
Brighter colors indicate higher values of the sum of the laser
intensities

P
4
i¼1 jAij2. (b) Space-time diagram for the pulse train

bound state regime for two lasers ðτ0 ¼ 1.9043Þ. Coupling
parameters are η ¼ 0.5 and φ ¼ 3.0.
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that at zero pulse separation of the two pulses, Θ ¼ 0, the
system (7) transforms into a single equation _Φ ¼ μCΦ sinΦ,
which admits either in-phase Φ ¼ 0 or antiphase synchro-
nization Φ ¼ π.
Noteworthily, the reduced system (7) resembles the

equations governing the slow dynamics of the distance
and phase difference between two interacting dissipative
solitons in spatially extended systems described by the
generalized complex Ginzburg-Landau equation on an
unbounded domain [28,54–56]. The case of coupled lasers,
however, is distinct in two aspects: (i) Unlike the case of the
complex Ginzburg-Landau equation, the presence of the
phase shifts ΔΘ;ΦðΘÞ in Eq. (7) allows for the existence of
bound states with the Θ-dependent phase difference
between the pulses different from 0, π, and �π=2, and
(ii) instead of a countable set of equidistant roots, the
functions fΘ;ΦðΘÞ have no roots at all, which means that in
laser arrays there is a finite number of bound states which
are distributed along the Θ axis in a more complex manner.
The 2D phase plane of the reduced system (7) is

presented in Fig. 4, where the equilibria and their basins
of attraction are shown. Each single-colored region deter-
mines a set of pulse separations and phase differences,
starting from which the system evolves to a single attractor
(points B1–B3 and C1) characterized by fixed Θ and Φ.
Note that due to the symmetry ðΘ;ΦÞ → ð−Θ;−ΦÞ it is
sufficient to consider the left half of the coordinate system.
Here, the point C1 corresponds to a stable antiphase
synchronized solution, while points B1, B2, and B3
indicate the bound states with nonzero pulse time separa-
tions Θ. Figure 4 shows the case of φ ¼ 3.0. For other
values of φ, there can coexist up to five stable equilibria

corresponding to distinct bound states. Interestingly, the
basin boundaries of these states can wind into unstable
spiral sources as shown in the inset in Fig. 4. The video
illustrating the position of the equilibria and corresponding
basins of attraction for different values of φ is available in
Supplemental Material [52].
A more detailed stability analysis of the bound state

corresponding to the equilibrium B1 is performed numeri-
cally using the path continuation software DDE-BIFTOOL
[57] applied to Eq. (1). The bifurcation diagram showing
the domain of stability and primary bifurcations of this
bound state is presented in Fig. 2(b).
It is noteworthy that, due to the asymmetry of the single

pulse shape, the time separations and phase shifts between
adjacent pulses in the bound pulse train as well as their
velocities depend on the number of lasers N. The solution
of the reduced system in the case of N lasers (Sec. B in
Supplemental Material [52]) as well as direct numerical
simulations for N ¼ 4 and N ¼ 7 suggest that the for-
mation of bound pulse trains with a large number of pulses
can be qualitatively understood in terms of pairwise
interaction between the adjacent pulses.
In conclusion, we discovered the bound pulse train

regime in an array of nearest-neighbor coupled nonlinear
distributed dynamical systems. In this regime, trains of
short pulses generated by individual elements of the array
are bound by local interaction, forming the closely packed
pulse clusters. In the limit of small coupling strength,
asymptotic equations are derived governing the slow time
evolution positions and phases of the interacting pulses in
an array consisting of two pulse generators. The pulse
separations and phase differences between the pulses in
bound states as well as basins of attraction of different
bound states calculated using this semianalytical approach
are in good agreement with the results of direct numerical
simulations of a set of DDEs describing an array of coupled
mode-locked lasers (1). The stability and bifurcations of
bound pulse train regime were studied numerically with the
path-following technique. The bound states reported in this
Letter have a similarity with rather well-studied bound
states of dissipative solitons in spatially extended systems,
where multiple soliton clusters surrounded by a linearly
stable homogeneous regime can be formed due to a similar
mechanism of balancing between attraction and repulsion.
However, unlike the bound states formed by dissipative
solitons, the appearance of this new type of bound states is
related to the presence of coupling between the neighboring
lasers, and it is impossible in a solitary array element,
where the zero intensity steady state is linearly unstable and
pulse interaction is nonlocal and always repulsive.
Furthermore, unlike the case of complex Ginzburg-
Landau-type equations, the new bound pulse train regime
can exhibit a continuously changing phase difference
between the pulses depending on their time separation
and correspond to a finite number of fixed points

FIG. 4. Stable equilibria and their basins of attraction on the
phase plane of the reduced system (7) for coupling phase
φ ¼ 3.0. C1 corresponds to the stable antiphase synchronized
solution. Equilibria B1, B2, and B3 correspond to bound states
with increasing time separation Θ, which have different phase
shifts Φ between pulse intensity maxima. Inset: An example of
the intertwining basins of attraction of five stable bound states in
the vicinity of a unstable spiral source for Eq. (7) for φ ¼ 3.99.
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distributed nonequidistantly along the time axis. Since the
physical mechanism of the bound state formation due to the
coupling between neighboring lasers is quite general, it can
be observed in other physical systems described by coupled
sets of partial or delay differential equations, where pulse
solutions are present. Therefore, we believe that our results
are generic and valid for a large class of coupled spatially
extended systems of different physical origin.
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