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We describe a large family of nonequilibrium steady states (NESS) corresponding to forced flows over
obstacles. The spatial structure at large distances from the obstacle is shown to be universal, and can be
quantitatively characterized in terms of certain collective modes of the strongly coupled many body system,
which we define in this work. In holography, these modes are spatial analogues of quasinormal modes,
which are known to be responsible for universal aspects of relaxation of time dependent systems. These
modes can be both hydrodynamical or nonhydrodynamical in origin. The decay lengths of the hydro-
dynamic modes are set by η=s, the shear viscosity over entropy density ratio, suggesting a new route to
experimentally measuring this ratio. We also point out a new class of nonequilibrium phase transitions,
across which the spatial structure of the NESS undergoes a dramatic change, characterized by the properties
of the spectrum of these spatial collective modes.
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Equilibrium many-body systems are known to exhibit
universal behavior, as famously exemplified by their
critical phenomena near second-order phase transitions.
These are characterized by a small number of universal
modes that scale according to computable critical expo-
nents and leave their imprint on macroscopic physical
properties of the system.
This state of affairs contrasts with the situation when

such systems are not in equilibrium [1], with universal
results few and far between. Determining the physical
characteristics of such a system is typically strongly
situation dependent. A notable exception is the dynamical
crossing of a second-order phase transition at a finite rate
τQ. As proposed by Kibble [2] and Zurek [3], the number of
topological defects that form in the broken symmetry phase
is given in terms of a scaling law, depending on a small set
of universal modes. The exact details of the quench through
the transition are unimportant, only the rate of approach to
the critical point enters into the scaling law [3].
Given the success of the KZ mechanism [4], and the

recent experimental interest it has created, for example,
Refs. [5,6], one may ask whether other scenarios exist that
are able to strongly constrain out of equilibrium dynamics
using a small set of universal collective modes, leaving an
imprint on the macroscopic spatial structure of the system.
In this work we consider a large class of nonequilibrium

steady states (NESS) are set up as follows: consider a many
body system forced to flow over an obstacle. This gives rise
to a strong nonlinear disturbance in the vicinity of the
obstacle, while the flow far from it on either side is simple
with a constant velocity vL on the left and vR on the right
(see Fig. 1). One then wants to know what the steady state
looks like at large distances, in other words how the
strongly nonlinear behavior around the obstacle relaxes
spatially toward its asymptotic values. This is a difficult

problem, in general out of technical reach of current
methods. The AdS=CFT correspondence gives rise to a
powerful computational framework particularly in the
nonequilibrium setting. Indeed this approach has been
used to elucidate the temporal equilibration (Furthermore,
previous studies of holographic NESS include current
driven [7–10] as well as heat-driven [11,12] cases.) of
strongly coupled plasmas [13,14] and superfluids [15]. In
each case, the late-time behavior is very accurately pre-
dicted by the spectrum of low-lying quasinormal modes
(QNM) [16], whose relevance to thermalization was first
pointed out in Ref. [17].
In this Letter we use holography to explicitly find the full

nonlinear solution for certain strongly coupled theories,
whose dual solutions are black holes without Killing
horizons. The spatial structure is indeed universally char-
acterized by a stationary version of QNMs (Modes of this
kind have been studied in holography in a variety of other
contexts [18–22].), which we define and obtain in a few
illustrative examples. For a given choice of asymptotic flow
velocity, v ¼ vL or vR, these modes form a discrete set of

FIG. 1. Schematic representation of the NESS considered,
showing the imprint of spatial collective modes which describe
the return to equilibrium far from an obstacle. The vertical axis f
refers to a quantity of interest, such as the expectation value of the
stress tensor, with a value fL on the left and fR on the right.
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purely imaginary wave numbers kðvÞ and the leading
mode, i.e., the one with the smallest jImkj can be
hydrodynamical or nonhydrodynamical, and will be
denoted k�. The relaxation towards the asymptotic flow
happens at the exponential rate ∝ e−Imk�x, so that the
relaxation towards the right boundary value corresponds
to a mode with Imk� > 0, while the left mode has
Imk� < 0. A drastic reorganization of the spatial structure
of the NESS occurs whenever a dominant mode crosses the
real axis for a certain critical velocity vc. In this case, as
v → v−c the downstream spatial relaxation rate will tend
toward zero, only to be, for v > vc, dominated by the
previously subleading mode. The upstream spatial relax-
ation rate undergoes a similar transition as v is decreased
through vc. This constitutes a new nonequilibrium phase
transition, and we conjecture that transitions of this form
exist in systems outside of holography. Indeed, we provide
examples of such transitions purely from the point of view
of hydrodynamics.
The physical setup considered in this work should be

regarded as a spacelike version of a quench [23]. Instead of
switching on a source at some time t0 and then asking about
the temporal relaxation towards a new equilibrium, we
consider an obstacle (modeled by a source) at some spatial
location x0 and asking about the spatial relaxation towards
the asymptotic equilibrium. In both cases the asymptotic
physics is fully universal and determined by a spectrum of
discrete collective modes of the system. The importance of
QNMs in holography cannot be overstated, and attempts
are being made to define and explore them beyond
AdS=CFT [24]. Here we point out that an equally rich
and universal story is present when considering NESS,
opening the exciting possibility to access these modes via
measurements of the spatial structure of driven critical
systems in the lab. In particular, for modes that are
hydrodynamic in origin the spatial decay rate (in units
of the temperature) depends directly on the shear viscosity
in units of the entropy density, η=s. This applies for any
system with an effective hydrodynamic description, greatly
extending the scope beyond holography and raising the
possibility of an experimental measurement of η=s using
the spatial structure of NESS. To this end, we note that
recent experiments have demonstrated the presence of
hydrodynamic electron flow in PdCoO2 [25], as well as
graphene [26].
Relativistic hydrodynamics in d dimensions.—

Hydrodynamics describes a wide class of systems in the
form of a universal theory that arises in a long wavelength
limit. In this section we construct the spatial collective
modes that appear in this effective theory. We stress that
while hydrodynamics does contain certain spatial collective
modes, there can be additional “higher” modes in a more
complete theory that do not exist in the hydrodynamic
limit. This is the case for holography, discussed in the next
section.

To first order the Landau frame stress tensor is

Tμν ¼ εuμuν þ pΔμν − ησμν − ζΔμν∂ · uþOð∂Þ2; ð1Þ

subject to the conservation equations, ∂μTμν ¼ 0. uμ is a
timelike unit-normalized d-velocity field, while Δμν ¼
ημν þ uμuν projects orthogonal to uμ. η and ζ are the
shear and bulk viscosities. The shear tensor is given by
σμν ≡ 2ΔμρΔνσ½∂ðρuσÞ − (1=ðd − 1Þ)ηρσ∂ · u�.
To find the collective modes, we solve the conservation

equations for linear perturbations about a long-range
equilibrium state characterized by ε, p, and a (d − 1)
velocity, v, such that uμ¼γð1;vÞ, where γ¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v ·v

p
.

The perturbations we seek are of the form, εðxμÞ ¼
εþ δεeikσx

σ
with similar expressions for pðxμÞ and

uμðxνÞ, all of which are time independent in the laboratory
frame, i.e., kμ ¼ ð0;kÞ. Energy conservation immediately
gives δε ¼ −ðεþ pÞk · δu=ðk · uÞ, and for a speed of sound
cs we also write δp ¼ c2sδε. Thus, the remaining unsolved
conservation equations determine δuμ, which are either
transverse or longitudinal with respect to the obstacle.
Transverse perturbations, k · δuT ¼ 0, obey the dispersion
relation

k ¼ −i
εþ p
ηc2

v cos θ þOðk2Þ; ð2Þ

where we denote v ¼ jvj, k ¼ ffiffiffiffiffiffiffiffiffiffi
k · k

p
, and v · k ¼

vk cos θ, obtained by solving for v order by order in
small k, and then inverting. Despite being time indepen-
dent, this mode is related to the usual shear diffusion pole.
Specifically, if we perform a Lorentz transformation to the
rest frame of the fluid where the wave vector picks up a
frequency kμ ¼ ðω;qÞ, at this order these quantities obey a
dispersion relation of the form ω ¼ −iDq2 with diffusion
constant D ¼ (ηc2=ðεþ pÞ). [The transformation between
the fluid rest frame quantities ω, q and the laboratory
frame quantities, k, v is given in the Supplemental
Material [27] (5).] Note, however, that q here is imaginary.
Next, the longitudinal sector, δuμ ¼ δuLΔμνkν, has a
dispersion relation,

k ¼ −i
εþ p

d−2
d−1 ηþ 1

2
ζ

1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv0c Þ2

q
cos θ

ð1 − ðv0c sin θÞ2Þ2
ðv ∓ v0Þ þOðkÞ2;

ð3Þ

where v0 ≡ cs sec θ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðcs=cÞ tan θ�2

p
and again we

have reintroduced the speed of light, c. Similarly this mode
is related to sound; in the rest frame of the fluid it
obeys the dispersion relation ω ¼ ∓csq − ði=2Þf½ðd − 2Þ=
ðd − 1Þ2ηþ ζ�=½εþ p�gc2q2, but again note q is
imaginary.
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The appearance of η, ζ in kðvÞ suggests a new route to
their measurement (as well as other transport coefficients
which appear at higher orders in k)—by measuring the long
range spatial structure of NESS in the laboratory.
Specifically, using εþ p ¼ Ts we see that k=T in Eq. (2)
depends only on η=s and parameters of the flow (v, θ), while
Eq. (3) depends additionally on ζ=s and cs. The preceding
analysis relies only on universal properties of hydrodynam-
ics, and is thus independent of holographic duality.
Holography for CFT3.—Moving to a complete theory

allows us to construct a complete spectrum—hydrody-
namic and otherwise—as well as demonstrate its role in
explicitly constructed NESS.
As before, we construct the spectrum of spatial collective

modes by linearly perturbing the equilibrium solution
reached far from the obstacle. In this case the equilibrium
configuration is given by the Schwarzschild black brane
metric, boosted along a planar horizon direction by uμ.
(One could also consider different equilibrium states, for
instance those with charge, superconductors, insulators,
etc.) The computation is reminiscent of a QNM calculation
where the boundary condition at the event horizon is
ingoing. Here the spatial collective modes are time inde-
pendent by construction, so an ingoing condition cannot
apply. We define the modes to be those which are regular on
the future event horizon. Further technical details can be
found in the Supplemental Material [27].

The leading (i.e., longest range) parts of the resulting
spectrum are displayed in Fig. 2. We also show the modes
obtained in the first-order hydrodynamic approximation,
with appropriate transport coefficients η ¼ s=ð4πÞ, ζ ¼ 0

and cs ¼ 1=
ffiffiffi
2

p
. All modes found have Rek ¼ 0. As

previously advertised the holographic theory contains
additional modes that are not present in hydrodynamics
and for some v these nonhydrodynamic modes give the
dominant long distance contribution.
A new nonequilibrium phase transition is also visible in

Fig. 2. In the longitudinal channel, as v is increased through
cs, there is a sudden change in the dominant mode, k�, on
either the upstream or downstream side. For instance, on
the downstream side the hydrodynamic mode decay length
becomes ever longer as v is increased, and becomes
suddenly dominated by a short nonhydrodynamic mode
once v > cs.
Holography for CFT2 and CFT∞.—In low and high

spacetime dimension analytic treatment of the spatial
collective modes becomes possible. For d ¼ 2 equilibrium
is given by the BTZ black brane. For a scalar field
perturbation about the zero velocity background there is
a discrete set of modes labeled by n ∈ Z, with dispersion
relations ω ¼ �q − i4πT½ðΔ=2Þ þ n� [32,33], where T is
the Hawking temperature of the black hole and Δ is the
dimension of the dual operator. Exploiting Lorentz invari-
ance to reach the modes of interest, we pick ω ¼ −γkv,
q ¼ γk, obtaining

k ¼ i
4πT

γðv� 1Þ
�
Δ
2
þ n

�
; ð4Þ

where Rek ¼ 0 and—comparing to Eqs. (2) and (3)—a
suggestive factor of 4πT, despite η not being defined in
d ¼ 2. In the limit d → ∞ there is a decoupled sector of
perturbations that are supported in a near horizon region,
corresponding to modes with ω, q ∼ d0 [34–36]. These can
be constructed analytically [37]. Once more using Lorentz
invariance an appropriate choice of ω, q gives Rek ¼ 0. For
small k these modes match the large d limit of the
hydrodynamic modes computed earlier.
Nonlinear holographic NESS construction.—In the pre-

vious sections we constructed individual spatial collective
modes. Here we show that these modes govern the behavior
the NESS far from the obstacle by explicit construction and
checking the asymptotics. These are given holographically
by families of black branes with non-Killing horizons, in
which the obstacle is provided by x-dependent deforma-
tions of the CFT metric, γμν, i.e.,

γμν ¼ ημν þ sμνðxÞ: ð5Þ
We consider sources whose components are Gaussian
centred, on x ¼ 0. The details of the obstacle are not
important, as the spectrum of collective modes is a property
of the theory itself. We only have to ensure that the obstacle

FIG. 2. The discrete spectrum of spatial collective modes as a
function of asymptotic flow velocity kðvÞ for a CFT3, computed
holographically using stationary perturbations of boosted
Schwarzschild-AdS4. Here we show the case of flow incident
angle θ ¼ 0 (black). There is a ðv; kÞ → ð−v;−kÞ symmetry that
connects some of the modes shown through v ¼ 0. Also shown is
the conformal relativistic hydrodynamic spectrum (red dashed)
valid to first order in small k. All modes found have Rek ¼ 0. On
the downstream side, for some flow velocities v there are no
modes of hydrodynamic origin (blue shaded region). In the
longitudinal channel there is a phase transition as the velocity is
increased through cs (arrows) giving rise to discontinuities in k�.
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excites the part of the spectrum we are interested in. The
source terms in Eq. (5) can act as a source for shear, and we
allow for velocity components transverse to the obstacle.
Our construction proceeds numerically based on the

method of Ref. [23], which formulates the stationary
gravitational problem such that the bulk coordinates pen-
etrate the future event horizon. (See the Supplemental
Material [27] for details, which includes Refs. [28–31].) As
emphasized in Ref. [23], one must supply enough data in
the form of boundary conditions to fix all the moduli of the
corresponding flow. In addition to ε, v of Ref. [23], we fix a
third modulus, θ, the asymptotic incident angle of the flow.
In general there is refraction and θL ≠ θR.
We have constructed solutions which are asymptotically

subsonic-to-subsonic, as well as supersonic-to-supersonic,
with and without transverse flow. For these solutions we
seek local fluid variables by using the field theory stress
tensor, hTμνi [38]. We solve the following eigenvalue
problem at each point on the boundary,

hTμνiUμ ¼ −εUν; γμνUμUν ¼ −1; ð6Þ
for the three undetermined pieces of ε, Uμ. Asymptotically
on the left or right these are the moduli of the solution, i.e.,
asymptotically Uμ ¼ γðvÞð1; v cos θ; v sin θÞ.
To check for the presence of the collective modes we

note some quantity f in the channel of interest will take the

form f ¼ Cþ Ake−Imkx. To numerically extract the value
of k we then compute

κfðxÞ ¼ −
1

ε1=3
∂2
xf

∂xf
; ð7Þ

and then Imk=ε1=3 ¼ limx→�∞κfðxÞ. To illustrate we use an
example where a mode of nonhydrodynamic origin is
dominant. One place this occurs is in the transverse
channel, downstream in a subsonic flow (as we may predict
from the spectrum of Fig. 2). We give an example of this
flow in Fig. 3 where we show κε and κvy , where
vy ¼ Uy=Ut. These quantities display excellent agreement
with the longest range spatial collective mode obtained by
direct construction, confirming the expectation that the
spatial collective modes determine the long distance
behavior of the nonlinear NESS.
Finally, we turn to a demonstration of the proposed

nonequilibrium phase transitions in the longitudinal chan-
nel at v ¼ cs. In Fig. 4 we consider the downstream, right-
hand side of a NESS in two cases, vR < cs and vR > cs. In
each case we show the spatial decay of ε and the
longitudinal collective mode spectrum on the complex-k
plane. Beginning with vR < cs, the long range behavior is
governed by the smaller Imk > 0 mode, as the plot of ε
indicates. As vR is increased, this mode descends down the

FIG. 3. Asymptotically subsonic-to-subsonic NESS, with finite
transverse velocity. We show (with black circles) κε for the
longitudinal channel (upper panel) and κvy for the transverse
channel (lower panel), as defined in Eq. (7). Also shown are the
values of Imk=ε1=3 for the spatial collective modes, computed
directly given the left or right moduli of the asymptotic
equilibrium. The red solid lines are continuously connected to
the hydrodynamic modes labeled, while the blue solid line is a
nonhydrodynamic mode.

FIG. 4. Demonstration of the new nonequilibrium phase
transition on the downstream, right-hand side of a NESS, from
vR < cs (left column) to vR > cs (right column). Top row:
locations of the spatial collective modes at these vR in the
complex k plane, displaying one mode of hydrodynamic origin
(red x) and one nonhydrodynamic mode (blue circle). Bottom
row: Spatial profile of ε on the right-hand side of a NESS (black
circles) together with an amplitude-fit collective mode from the
spectrum above with the longest decay length (solid lines).
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imaginary-k axis and crosses the real axis at vR ¼ cs. For
vR > cs this mode is in the lower half plane, no longer
decays as x → þ∞, and so it can no longer appear on the
right-hand side of a regular NESS. The behavior of ε is thus
suddenly dominated by the second, nonhydrodynamic
mode which is now the longest range contribution.
Discussion.—We have defined and constructed “spatial

collective modes” which, as we have argued, describe the
universal spatial relaxation to equilibrium at large distances
in a wide class of NESS. In the hydrodynamic limit the
decay length of the modes, L≡ jImkj−1, depend directly on
η=s, suggesting a new route to its experimental measure-
ment. For example, for flows at standard temperature with
θ ¼ 0 and v ¼ βms−1, the decay lengths in the transverse
sector are Lβ≃ 7.46 mm for graphene (Taking c ¼ vF
from Ref. [39] and η=s from Ref. [40].) (L≃ 7.46 nm at
v ¼ vF) and Lβ≃ 200 m for N ¼ 4 SYM plasma.
The often delicate issue of heating in NESS (e.g.,

Refs. [41,42]) here is sidestepped, since the spatial pattern
of the heat flow itself is universal and predicted by our
mechanism. We have constructed explicit examples of non-
Killing black holes in holography which confirm the role
played by these modes, and demonstrated novel nonequili-
brium phase transitions resulting from a reorganization of
their spectrum. It is our hope that these modes, which may
be viewed as the spatial analogues of QNMs, provide
fruitful targets for further theoretical and experimental
work on NESS.
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