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We develop general counting formulas for primary fields in free four dimensional (4D) scalar conformal
field theory (CFT). Using a duality map between primary operators in scalar field theory and multivariable
polynomial functions subject to differential constraints, we identify a sector of holomorphic primary fields
corresponding to polynomial functions on a class of permutation orbifolds. These orbifolds have
palindromic Hilbert series, which indicates they are Calabi-Yau orbifolds. We construct the unique
top-dimensional holomorphic form expected from the Calabi-Yau property. This sector includes and
extends previous constructions of infinite families of primary fields. We sketch the generalization of these
results to free 4D vector and matrix CFTs.
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Introduction.—In Ref. [1] we started a program of
describing the discrete combinatoric data of four dimen-
sional conformal field theories (CFT4) using the frame-
work of SOð4; 2Þ invariant 2D topological field theory
(TFT2). TFT2 associates state spaces to circles and the
operator product expansion of the 4D CFT determines
amplitudes for 3-holed spheres. We described how the
associativity conditions of 2D TFT are satisfied by the
correlators of free scalar CFT4. We initiated the inves-
tigation of SOð4; 2Þ invariant TFT2 as an approach to
perturbative field theory in Ref. [2], making contact with
the equivariant interpretation of conformal Feynman inte-
grals in mathematical work [3]. In this Letter we return to
free scalar CFT4 and develop the concrete counting and
construction of primary fields, which gives the decom-
position of the state space of the 2D TFT in terms of
SOð4; 2Þ representations. While two dimensional con-
formal field theories have infinite dimensional symmetries
which allow, in the case of rational CFTs, all the local
operators to fall into finitely many representations of the
symmetry algebra, the complete description of local oper-
ators in even the simplest free field CFT4s is an important
challenge, with implications for a variety of problems in
theoretical physics. Such a complete description would
amount to knowing the spectrum of any postulated holo-
graphic dual. For example, while the free OðNÞ vector
model in three dimensions has a known holographic dual
[4–6], finding such a dual in four dimensions is an open
problem. A complete characterization of the local operators
is also likely to have implications for the physics of QCD
and of the interacting scalar field theory at the Wilson-
Fischer fixed point. Elegant arguments have been found
which relate explicit information on the combinatorics of
primary fields and OPE coefficients of free CFT4 to
observables in the epsilon expansion [7–11]. Explicit

constructions of restricted classes of primary fields in
the free limit of QCD is known to have applications in
the computation of anomalous dimensions of operators (see
Ref. [12]). In this Letter, we present new results general-
izing existing constructions of primary fields in the free
scalar field theory, inOðNÞ vector models as well as matrix
models in four dimensions. These generalizations define an
“extremal sector,” characterized in terms of SOð4; 2Þ
representation theory. The extremal sector is found to have
a surprising Calabi-Yau structure, a geometrical structure
arising from an intriguing interplay between SOð4; 2Þ
representation theory and symmetric groups.
In radial quantization of CFTs [13], local operators at a

point correspond to quantum states. The two point function
yields an inner product on the quantum states and the scaling
operator is the Hamiltonian. Focusing on the local operators
which are primary fields constructed from n copies of the
elementary field ϕ in free scalar theory, we have an inner
product and a Hamiltonian. Alongside these elements of
radial quantization, we use a map between derivatives
∂μ → xμ, which allows us to work with representations of
SOð4; 2Þ on polynomials [see Ref. [3] for detailed treatment
of SOð4; 2Þ reps from this perspective]. We thus map the
problem of constructing primary fields to a problem inmany
body quantum mechanics of n bosonic particles in R4,
which has an inner product and Hamiltonian coming from
radial quantization. Concretely, we have the problem of
solving a system of linear constraints for functions ΨðxIμÞ,
with an associated counting problem of the dimensions of
spaces of solutions as a function of the quantummechanical
energy corresponding to the degree of the polynomials. This
system of equations is given in Eq. (16). One of these
constraints is a harmonicity condition in ðR4Þ×n. A large
class of solutions is obtained by choosing a complex
structure ðz; wÞ on R4 ¼ C2 and restricting to holomorphic
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solutions. The special case where the functions depend on a
single complex variable makes contact with previously
available explicit construction of primary fields in the
literature. The reduction of the second order constraint to
first order holomorphic conditions has the intriguing con-
sequence that these primary fields have a closed ring
structure. The associated generating functions have palin-
dromicity properties due to the fact that the primary fields
correspond to functions on the Calabi-Yau orbifolds

ðC2Þn=ðC2 × SnÞ; ð1Þ
which can also be written as

ðCn=C × Cn=CÞ=Sn; ð2Þ
where n is the number of elementary fields ϕ. A generali-
zation of our discussion to theOðNÞvectormodel shows that
the holomorphic singlet primary fields correspond to func-
tions on the Calabi-Yau orbifold

ðC2Þ2n=ðC2 × Sn½S2�Þ ¼ ðC2n=C × C2n=CÞ=Sn½S2�; ð3Þ
where Sn½S2� is a wreath product subgroup of S2n. For the
matrix model in which ϕ transforms in the adjoint ofUðNÞ,
we find holomorphic primaries corresponding to polyno-
mial functions on

½ðC2Þn × Sn�=ðC2 × SnÞ; ð4Þ
which can also be written as

ðCn=C × Cn=C × SnÞ=Sn: ð5Þ
Multivariable Polynomial (many-body) representation

of SOð4; 2Þ.—In radial quantization, the scalar field has a
mode expansion given by

ϕðxμÞ ¼
X∞
l¼0

X
m∈Vl

a†l;mYl;mðxÞ þ
X∞
l¼0

X
m∈Vl

al;mjxj−2Yl;mðx0Þ:

ð6Þ
Vl is the representation of SOð4Þ corresponding to sym-
metric traceless tensors of rank l. The index m runs over a
basis for this vector space. Acting on the vacuum state j0i
(which is, by definition, annihilated by the al;m) with a local
operator ∂μ1…∂μkϕ and taking the limit x → 0, we get a
state. Taking the dual of this state and pairing with ϕðxÞj0i
we get a polynomial. Thus, there is a map

∂μ1…∂μkϕ ↔ Pμ1…Pμk · 1; ð7Þ
where [1]

Pμ ¼ x2∂μ − 2xμx:∂ − 2xμ: ð8Þ

The scalar field itself maps to 1. The free field in
Eq. (6) satisfies the equation of motion ∂μ∂μϕ ¼ 0.
Correspondingly, PμPμ ¼ x4∂2 annihilates 1. When con-
sidering operators constructed using n fields, we have a
representation of the conformal group on polynomials in

variables xIμ, where I ranges from 1 to n. The generators for
special conformal transformations and translations are [1]

Kμ ¼
Xn
I¼1

∂
∂xIμ ; ð9Þ

Pμ ¼
Xn
I¼1

�
xIρxIρ

∂
xIμ

− 2xIμxIρ
∂
xIρ

− 2xIμ

�
: ð10Þ

The remaining generators are determined by the soð4; 2Þ
algebra. The xIμ can be considered as the coordinates
of n particles. The construction of primaries using n copies
of the elementary field ϕ is therefore mapped to a many-
body quantum mechanics problem with n particles.
Tracelessness can be implemented [14,15] using variables
zxI ¼ zμxIμ with null zμ: zμzμ ¼ 0. Any polynomial in zxI

gives a traceless symmetric polynomial in xIμ after the zμs
are stripped away. The translation between polynomials
and operators is

ðz∂Þkϕ ↔ ð−1Þk2kk!ðzxÞk: ð11Þ
This construction is not general: there are primaries that are
not symmetric in their indices and so cannot be represented
as a polynomial in zx. For the general discussion, introduce
projectors from symmetric tensors to traceless symmetric
tensors. For example, for tensors of rank 2 and 3 we have

Sαβμν ¼ δαμδ
β
ν −

1

4
δμνδ

αβ;

Sαβγμνρ ¼ δαμδ
β
νδ

γ
ρ −

1

6
ðδμνδαβδγρ þ δμρδ

αγδβν þ δαμδ
βγδνρÞ: ð12Þ

We recognize that these are projectors in the Brauer algebra
of tensor space operators which commute with SOð4Þ [16]

Sð2Þ ¼ 1 −
C12

4
;

Sð3Þ ¼ 1 −
1

6
ðC12 þ C13 þ C23Þ: ð13Þ

The Cij are linear operators with matrix elements as in
Eq. (12). They satisfy

ðSðnÞÞ2Pn ¼ SðnÞPn; ð14Þ
where

Pn ¼
1

n!

X
σ∈Sn

σ: ð15Þ

The projector property along with the property that they
start with 1 completely determines these elements of the
Brauer algebra. In general,

Pμ1…Pμn × 1 ¼ ð−1Þn2nn!ðSðnÞÞν1…νn
μ1…μn

xν1…xνn :

The multiplication (14) is in the Brauer algebra, where
loops are assigned the value of 4. The factor on the right-
hand side above is obtained by deriving an obvious
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recursion formula. Note that the term x2∂μ in Pμ does not
raise the rank of the tensor. The other two terms contribute
to the recursion.
States at dimension nþ k in V⊗n correspond to poly-

nomials in xIμ of degree k. Primaries at dimension nþ k are
degree k polynomials ΨðxIμÞ with the conditions

KμΨðxIμÞ ¼
X
I

∂
∂xIμ Ψðx

I
μÞ ¼ 0;

LIΨðxIμÞ ¼
X
μ

∂
∂xIμ

∂
∂xIμ Ψðx

I
μÞ ¼ 0;

ΨðxIμÞ ¼ ΨðxσðIÞμ Þ: ð16Þ
The first condition says the special conformal generators
annihilate a primary operator. The second condition imple-
ments the free scalar equation of motion. The last condition
imposes Sn invariance, to implement bosonic statistics of
the scalar field.
We find it useful to employ the complex coordinates

z ¼ x1 þ ix2; w ¼ x3 þ ix4;

z̄ ¼ x1 − ix2; w̄ ¼ x3 − ix4; ð17Þ
which have the following ðj3L; j3RÞ charge assignments

z ↔

�
1

2
;
1

2

�
; z̄ ↔

�
−
1

2
;−

1

2

�
;

w ↔

�
1

2
;−

1

2

�
; w̄ ↔

�
−
1

2
;
1

2

�
: ð18Þ

This amounts to choosing an isomorphism between R4

and C × C. We will construct a class of primaries corre-
sponding to holomorphic polynomial functions on

C2n=ðC2 × SnÞ: ð19Þ
Counting with SOð4; 2Þ characters.—The number

N½Δ;j1;j2� of primary operators, of dimension Δ and spin
ðj1; j2Þ built out of n scalar fields ϕ is obtained by
expanding the generating function

Gnðs; x; yÞ ¼
X
m;j1;j2

N½m;j1;j2�s
mxj1yj2 : ð20Þ

The generating function is given by (take n ≥ 3 to avoid
complications associated to null states)

Gnðs;x;yÞ¼
��

1−
1

x

��
1−

1

y

�
Znðs;x;yÞð1−s

ffiffiffiffiffi
xy

p Þ
�
1−s

ffiffiffi
x
y

r ��
1−s

ffiffiffi
y
x

r ��
1−

sffiffiffiffiffi
xy

p
��

≥
; ð21Þ

where Znðs; x; yÞ is defined by

Y∞
q¼0

Yq
2

a¼−q
2

Yq
2

b¼−q
2

1

1 − tsqþ1xayb
¼

X∞
n¼0

tnZnðs; x; yÞ: ð22Þ

This is obtained by constructing the character for the
symmetric product of n copies of the representation of the
scalar field, and decomposing into SOð4; 2Þ irreps [17,18].
We can specialize this counting formula. Consider the

leading twist fields, with ½Δ;j1;j2�¼fnþq;½ðq=2Þ;ðq=2Þ�g.
This is a complete spin multiplet. The highest spin primary
corresponds to a polynomial in z. For counting these
primaries, the general formulas given above reduce to

Gz
nðs; x; yÞ ¼ ½Zz

nðs; x; yÞð1 − s
ffiffiffiffiffi
xy

p Þ�; ð23Þ
where

Y∞
q¼0

1

1 − tsqþ1x
q
2y

q
2

¼
X∞
n¼0

tnZz
nðs; x; yÞ: ð24Þ

Using the simplified formulas we have

Gmax
n ðsÞ ¼ sn

ð1 − s2Þð1 − s3Þ…ð1 − snÞ : ð25Þ

Note the close connection to multiplicities of
VSLð2Þ
Λ¼nþk ⊗ VSn

½n�, which is the coefficient of qk in

Yn
i¼2

1

1 − qi
: ð26Þ

The result (25) was also recently obtained in Ref. [19].
A more general counting involves polynomials of zIμ and

wI
μ. We denote these as extremal primaries, since they have

ðs; jL; jRÞ ¼ ½nþ q; ðq=2Þ; jR�. In this case

Gz;w
n ðs; x; yÞ ¼

��
1 −

1

y

�
ð1 − s

ffiffiffiffiffi
xy

p Þ

ð1 − s
ffiffiffiffiffiffiffiffi
x=y

p
ÞZnðs; x; yÞ

�
≥
; ð27Þ

where

Y∞
q¼0

Yq
m¼0

1

ð1 − tsqþ1xq=2ym−q=2Þ ¼
X∞
n¼0

tnZz;w
n ðs; x; yÞ:

As explained in more detail in Sec. IV,

Zz;w
n ðs;x;yÞ¼ sn

X
Λ1

ZSHðs
ffiffiffiffiffi
xy

p
;Λ1ÞZSH

�
s

ffiffiffi
x
y

r
;Λ1

�
; ð28Þ

whereΛ1 is a partition of n, and ZSHðqÞ is given in Eq. (33).
Using these formulas, one finds, for n ¼ 3

Zz;w
3 ¼

s3½s6x3 þ s4x2 þ s2xþ 1þ s3x
3
2ð ffiffiffi

y
p þ 1ffiffi

y
p Þ�

ð1 − s2xyÞð1 − s3ðxyÞ32Þð1 − s2 x
yÞð1 − s3x

3
2

y
3
2

Þ
:

Gz;w
3 ¼ s3ð1þ s5x

5
2y

3
2Þ

ð1 − s4x2Þð1 − s3
ffiffiffiffiffiffiffiffiffi
x3y3

p
Þð1 − s2xyÞ

: ð29Þ
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Computing Z4ðs; x; yÞ in the same way we find

Gz;w
4 ¼ s4Rðs; x; yÞ

Dðs; x; yÞ ; ð30Þ

where

Rðs; x; yÞ ¼ 1þ s5x
5
2½ ffiffiffi

y
p þ s3x

3
2yþ s5x

5
2yþ y3 − s6x3y

5
2

− s8x4y
5
2 − s16x8y

7
2 − s11x

11
2 y2ð1þ yÞ

þ s7x
7
2ð1 − y2Þ þ s4x2y

3
2ð1 − y2Þ

þ s2x
ffiffiffi
y

p ð1þ y2Þ − s9x
9
2yð1þ y2Þ

− s10x5y
3
2ð1þ y − y2Þ − s

ffiffiffi
x

p ð1 − y − y2Þ�:
Dðs; x; yÞ ¼ ð1 − s2xyÞð1 − s3x

3
2y

3
2Þð1 − s4x2y2Þ

ð1 − s4x2Þð1 − s6x3Þð1 − s8x4Þ:
Similar constructions with the pairs ðz; w̄Þ; ðz̄; wÞ; ðz̄; w̄Þ are
possible.
Counting and construction with symmetric groups.—

The counting formulas derived in Sec. III can be used to
construct families of primary operators. The coordinates xIμ,
I ¼ 1;…; n admit a natural action of Sn. To satisfy the first
of Eq. (16), build n − 1 translation invariant “relative

coordinates” given by the successive differences xðaÞμ ¼
xaμ − xaþ1

μ . Using the complex coordinates z,w onR4 ¼ C2,
we have ðzI; wIÞ on ðR4Þn ¼ ðC2Þn. These differences span
the Sn irrep labeled by hook Young diagram with row
lengths [n − 1, 1]. A more convenient basis which connects
with Young’s orthonormal representation is useful for
computations (see Ref. [20] for this basis). Using complex
variables we have zðaÞ, z̄ðaÞ, wðaÞ, and w̄ðaÞ, which each
transform in the irrep ½n − 1; 1�≡ VH. Products
zða1Þzða2Þ � � � zðakÞ are in the V⊗k

H tensor product representa-
tion of Sn. Any polynomial in the hook variables automati-
cally obeys the first two constraints of Eq. (16). This follows
since the Laplacian in the second equation is� ∂2

∂zI∂z̄I þ
∂2

∂wI∂w̄I

�
Ψ ¼ 0: ð31Þ

The only thing left is to project to the Sn invariant sub-
space of V⊗k

H . The matrices representing the k-fold tensor
product are

½Γn
kðσÞ�a1;…;ak;b1;…;bk ¼ Γa1;b1ðσÞ…Γak;bkðσÞ;

where Γa;bðσÞ are matrices representing Sn in an orthogonal
basis of [n − 1, 1]. We can project to the invariants by
averaging over the group

Pa1a2���ak ¼
1

n!

X
σ∈Sn

½ΓkðσÞ�a1a2���ak;b1b2���bkZðb1Þ � � �ZðbkÞ:

The above expression gives
P

in̂iPiðzÞ, where n̂i are unit
vectors and Piðz1;…; znÞ are the polynomials we want.

By considering all possible degrees k ∈ f0; 1; 2;…g we
have a ring. These primaries have a ring structure, since
they obey a stronger linear version of the Laplacian
condition, which means that a product of solutions is also
a solution to the constraints. The counting formula (25)
gives the Hilbert series for holomorphic functions on
ðCn=CÞ=Sn. The quotient by C is effected by the first of
Eq. (16) which sets the center of mass momentum of the
many body wave function to zero. The orbifold by Sn is the
symmetry condition in Eq. (16). Using properties of Hilbert
series, it follows that the ring at hand has n − 1 generators,
which can be described explicitly [18].
The construction is easily extended to polynomials of

holomorphic coordinates zI andwI . Use hook variablesZðaÞ,
WðaÞ. The products Zða1Þ…ZðakÞWðak1 Þ…WðakþlÞ belong to a
subspace of the representation V⊗k

H ⊗ V⊗l
H of Sn, which we

will characterize in terms of representation theory. Consider
the expansions in terms of Sn × Sk irreps

V⊗k
H ¼ ⨁

Λ1⊢n;Λ2⊢k
VðSnÞ
Λ1

⊗ VðSkÞ
Λ2

⊗ VComðSn×SkÞ;
Λ1;Λ2

V⊗l
H ¼ ⨁

Λ3⊢n;Λ4⊢l
VðSnÞ
Λ3

⊗ VðSlÞ
Λ4

⊗ VComðSn×SlÞ:
Λ3;Λ4

ð32Þ

Multiplicities are given by dimensions of irreps of the
commutants ComðSn × SkÞ in V⊗k

H . Since the Z and W
variables are commuting, themonomials belong to the trivial
irreps Λ2 ¼ ½k� ⊗ Λ4 ¼ ½l� of Sk × Sl. To satisfy the third
constraint, project to Sn invariants in V⊗k

H ⊗ V⊗l
H . This

constrains Λ3 ¼ Λ1. So the number of Sk × Sl × Sn invar-
iants isX

Λ1⊢n
MultðΛ1; ½k�; Sn × SkÞMultðΛ1; ½l�; Sn × SlÞ:

The expansions (32) are explained further and used in the
construction of orthogonal bases of local operators in
Ref. [20]. The generating functions for these multiplicities
are derived in Ref. [20]. MultðΛ1; ½k�; Sn × SkÞ≡ Zk

SH is the
coefficient of qk in

ZSHðq;Λ1Þ ¼ ð1 − qÞqf½
P

i
ciðci−1Þ�=2g

Y
b

1

ð1 − qhbÞ
¼

X
k

qkZk
SHðΛ1Þ: ð33Þ

Here, ci is the length of the ith column in Λ1, b runs over
boxes in the Young diagramΛ1, and hb is the hook length of
the box b. Thus, for the number of primaries constructed
from zi, wi we getX

Λ1⊢n
Zk
SHðΛ1ÞZl

SHðΛ1Þ: ð34Þ

These are primaries of weight nþ kþ l, with ðJL3 ; JR3 Þ ¼
f½ðkþ lÞ=2�; ½ðk − lÞ=2�g. We can also show directly that
Znðs; x; yÞ in Eq. (27) is a sum over irrepsΛ1 of Sn as above.
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Thus,

Znðs;x;yÞ¼
X
Λ1⊢n

X
k;l

Zk
SHðΛ1ÞZl

SHðΛ1Þsnþkþlx½ðkþlÞ=2�y½ðk−lÞ=2�

¼ sn
X
Λ1⊢n

ZSHðq¼s
ffiffiffiffiffi
xy

p
;Λ1ÞZSHðq¼s

ffiffiffiffiffiffiffiffi
x=y

p
;Λ1Þ:

ð35Þ

Using the generating function (33), we get the rational
expressions for Z3ðs; x; yÞ; Z4ðs; x; yÞ used in Sec. III, by
explicitly doing the sum over Λ1.
This structure in the counting problem provides an

explicit construction formula. First, decompose the z and
w polynomials into definite Sn irreps. The projector onto
irrep r from the tensor product of k copies of the hook is

PΛ1

a1…ak;b1…bk
¼ 1

n!

X
σ∈Sn

χΛ1
ðσÞ½Γn

kðσÞ�a1…ak;b1…bk:

We also need the projection onto the symmetric irrep

Pa1…an;b1…bn ¼
1

n!

X
σ∈Sn

½Γn
kðσÞ�a1…an;b1…bn:

ð36Þ

Using these two projectors, the polynomials constructed
using two holomorphic variables are

X
A

PAðz⃗; w⃗Þn̂Ae1…ekþl
¼ Pe1…ekþl;a1…akc1…cl

× Pr
a1…ak;b1…bk

Pr
c1…cl;d1…dl

× Zðb1Þ…ZðbkÞWðd1Þ…WðdlÞ;

where n̂A are unit vectors and PAðzI; wIÞ are the poly-
nomials corresponding to primary fields. These polyno-
mials satisfy all the conditions in Eq. (16). They satisfy
stronger linear equations

∂w̄JPAðzI; wIÞ ¼ 0; ∂ z̄JPAðzI; wIÞ ¼ 0; ð37Þ

which imply the Laplacian conditions. As a result, taking
all possible k, l, we have a space of solutions to the
constraints which forms a ring due to the Leibniz rule for
products of functions. This is the polynomial ring of
holomorphic functions for

½ðCn=CÞ × ðCn=CÞ�=Sn: ð38Þ

Using generalities about Hilbert series for algebraic
varieties (see Refs. [21,22] for applications in the context
of moduli spaces of SUSY gauge theories), we see from
Eq. (29) that for n ¼ 3 the polynomials PAðz; wÞ are a
finitely generated polynomial ring with 3 generators. The
explicit constructions described above allow us to identify
the generators (zij ≡ zi − zj)

ðz12Þ2k þ ðz13Þ2k þ ðz23Þ2k ↔ ðs2xyÞk;

ðz13 þ z23Þkðz31 þ z21Þkðz12 þ z32Þk ↔
�
s3

ffiffiffiffiffiffiffiffiffi
x3y3

q �
k
;

						
w1 w2 w3

z1 z2 z3
1 1 1

						
2k

↔ ðs4x2Þk: ð39Þ

This is explained in more detail in the forthcoming
paper [18].
The Hilbert series associated to the counting of primary

fields ensures a palindromic property of the numerators.
This can be verified for Z3ðs; x; yÞ; Z4ðs; x; yÞ. A general
property of the numerators

Qnðs; x; yÞ ¼
XD
k¼0

akðx; yÞsk ð40Þ

is that aD−kðx; yÞ ¼ akðx; yÞ. A direct proof using the
combinatoric expressions like Eq. (28) in terms of sym-
metric group representation theory data, is given in
Ref. [18]. The theorem of Stanley [23] suggests that these
orbifolds are Calabi-Yau. This can be explicitly demon-
strated by constructing the top form and verifying that it is
nowhere vanishing [18].
The above argument starting from counting to motivate a

construction of the primary operators and then an asso-
ciated Calabi-Yau geometry goes through when the single
scalar is generalized to the OðNÞ vector model and to the
free UðNÞ gauge theory with ϕ a matrix in the adjoint. The
relevant geometries are the Calabi-Yau orbifolds

ðC2n=C × C2n=CÞ=Sn½S2� ð41Þ
and

ðCn=C × Cn=C × SnÞ=Sn; ð42Þ
respectively. It is fascinating that nontrivial properties of
the combinatorics of primary fields in free four dimensional
conformal field theory is related to the geometry of Calabi-
Yau orbifolds (38), (41), and (42). The interplay between
representation theory of symmetric groups and of the
conformal group SOð4; 2Þ which has led to this result is
likely to have generalizations in other dimensions and in
other physics problems involving the representation theory
of conformal groups.
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