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Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear
saturation density. We explore models of such compact stars where there are two first-order phase
transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another
first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting
(2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of
hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to
a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may
obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three
stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass
but different radii.
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Introduction.—Compact stars are formed in the last
stages of stellar evolution, their distinctive feature being
that they are in gravitational equilibrium supported by the
quantum pressure of degenerate fermionic matter. The less
dense of such objects, white dwarfs, are supported by
electron degeneracy pressure; the second densest class,
neutron stars, are supported by the degeneracy pressure of
interacting nucleonic (baryonic) matter. It has been con-
jectured long ago [1–4] that a higher-density class of
compact stars may arise in the form of hybrid (or quark)
stars, whose core (or entire volume) consists of quark
matter. It has been previously noted [5–10] that the hybrid
stars may form a separate branch (third family) of compact
stars, separated from neutron stars by an instability region
analogous to the one existing between white dwarfs and
neutron stars. Such an elucidation of the relationship
between the phases of high-density matter and the observ-
able properties of compact stars helps to address one of the
key challenges of strong interaction physics, which is to
constrain, from theory and experiment, the phase diagram
of ultradense matter.
NASA’s NICER experiment, to become operative in

2017 [11], will allow measurements of neutron star masses
and, especially, radii to unprecedented precision with better
than 10% uncertainty. Its capability of rotation-resolved
spectroscopy of the thermal and nonthermal emissions of
neutron stars in the soft (0.2–12 keV) x-ray band is
expected to provide new insights into key properties of
neutron stars, in particular, constraints on the mass-radius
relation. The measurements of the radii of neutron stars in
combination with the previously established lower limit
on the maximum mass of compact stars which is in
the range 1.93ð2Þ M⊙ [12,13] to 2.01ð4Þ M⊙ [14] will
strengthen existing constraints on the equation of state
(EOS) of ultradense matter.

The main body of research on hybrid compact stars, i.e.,
stars that are composed of a quark core surrounded by a
nuclear envelope (which in turn is composed minimally of a
liquid core and a crust), has concentrated on the case where
the quark-matter core is represented by a single phase (for
recent reviews, see [15,16]). However, as our understand-
ing of the QCD phase diagram improved over the years, it
became clear that the quark core may contain layers of
distinct phases such as the various color superconducting
phases of deconfined quark matter [17,18]. It is generally
agreed that the color-flavor-locked (CFL) phase will occur
in the QCD phase diagram at sufficiently high densities, but
different quark-matter phases may occur at intermediate
densities, such as the two-flavor color-superconducting
(2SC) phase and related phases [19–22], unpaired quark
matter [23], or other alternatives [24]. The stability of the
star sequences which develop CFL matter cores has been
questioned in studies based on the Nambu–Jona-Lasinio
model [25–27], but additional repulsive vector interaction
appears to stabilize stars with CFL cores [22]. Generically,
repulsive interaction in high-density (unpaired) quark
matter leads also to high-mass twin stars with and without
strangeness degrees of freedom [28–33], observations of
which may serve as evidence of the existence of a critical
end point in the QCD phase diagram [34,35].
At densities near or below nuclear saturation density

(nsat ¼ 0.16 fm−3), we use a “natural” EOS, constructed
from a Lagrangian (or Hamiltonian) that is fitted to nuclear
phenomenology. At higher densities, we allow for two
sharp first-order phase transitions, assuming that mixed
phases are disfavored by surface tension and electrostatic
energy costs [30,36–38]. Since the phase structure in that
region is unknown, we use a “synthetic” EOS via a “CSS”
parameterization [39] in which each quark-matter phase is
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assumed to have a constant (density-independent) speed of
sound [39–41]. This can describe the two sequential phase
transitions in terms of six parameters (see below). In this
parameter space, we explore the implications of such phase
transitions for the masses and radii of compact stars. We
find that the second phase transition can lead to a new
branch (fourth family) of compact stars, which in turn gives
rise to new phenomena such as twin configurations where
both members are hybrid stars and even triplets consisting
of three distinct configurations with the same mass but
different radii and internal composition.
Generating synthetic equations of state.—The parame-

ters of our EOS are illustrated in Fig. 1. For nuclear matter
we use the “DDME2” EOS which is based on density-
dependent relativistic functional theory [42]. This EOS
fulfills the constraints derived from the heavy ion collisions
and other terrestrial experiments; see Fig. 12 of Ref. [43]. It
produces nucleonic compact stars with a maximum gravi-
tational mass M ≃ 2.3 M⊙, where M⊙ is the solar mass.
The quark-matter EOS is parametrized by [39] (i) P1 and
P2 (or, equivalently, P1 and Δε2SC), the transition pressures
for the nuclear → 2SC and 2SC → CFL transitions; (ii)Δε1
and Δε2, the magnitudes of the jumps in the energy density
at these two phase transitions; and (iii) the squared sound
speeds s1 and s2 in the 2SC and CFL phases. Causality
requires s1;2 ≤ 1.
The analytic form of the quark-matter EOS is

PðεÞ ¼

8
>>><

>>>:

P1; ε1 < ε < ε1 þ Δε1;
P1 þ s1½ε − ðε1 þ Δε1Þ�; ε1 þ Δε1 < ε < ε2;

P2; ε2 < ε < ε2 þ Δε2;
P2 þ s2½ε − ðε2 þ Δε2Þ�; ε > ε2 þ Δε2:

ð1Þ

Mass-radius relations of compact stars.—We solved the
general relativistic structure equations of compact stars

[44,45] for our model EOS (1) for spherically symmetric
(nonrotating and nonmagnetized) stars. We look for stable
configurations using the Bardeen-Thorne-Meltzer criterion
[46], which in our context states that a star is stable if the
mass is rising with the central pressure. There may be other
nonradial instabilities, but we leave a study of these to
future work.
We first explore a scenario where both the quark-matter

equations of state are fairly stiff, with s1 ¼ 0.7 and s2 ¼ 1;
wewill discuss a softer EOS for the 2SC phase below.We fix
the nuclear → 2SC transition at P1 ¼ 1.7 × 1035 dyn cm−2,
corresponding to nucleonic energy density ε1 ¼
8.34 × 1014 g cm−3 and baryon density n1 ¼ 3.0nsat. This
means that the mass of the star reaches M ¼ 1.99 M⊙
before any transition to quark matter occurs, ensuring that
all our mass-radius curves obey the observational lower
bound on the maximum mass of a neutron star which is in
the range 1.93ð2Þ M⊙ [12,13] to 2.01ð4Þ M⊙ [14]. There
remain three parameters to fix: the width of the 2SC phase
Δε2SC and the two energy-density jumps Δε1 and Δε2.
Figure 2 shows the mass as a function of the central

pressure for four sequences of stars parametrized as
follows. We have fixed the width of the 2SC phase
Δε2SC=ε1 ¼ 0.27 and the energy-density jump at the
nuclear → 2SC transition Δε1=ε1 ¼ 0.6, and the four
sequences have different values of the energy-density jump
Δε2 at the 2SC → CFL transition.
Our choice of values of P1, Δε1, and s1 leads to the

occurrence of a disconnected branch of stars with 2SC
cores. In the figure, we see that, when the central pressure
rises above P1 and 2SC quark matter appears in the core,
the star becomes unstable (dashed black line), but then at
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FIG. 1. Schematic plot showing how we parametrize the EOS
of dense matter with two phase transitions to two quark-matter
phases. For convenience and specificity, we call the first quark-
matter phase 2SC and the second CFL.

FIG. 2. The stellar mass as a function of the star’s central
pressure for four different values of Δε2. The other parameters
of the EOS are fixed at P1 ¼ 1.7 × 1035 dyn cm−2, s1 ¼ 0.7,
Δε2SC=ε1 ¼ 0.27, Δε1=ε1 ¼ 0.6, and s2 ¼ 1. The vertical dotted
lines mark the two phase transitions at P1 and P2. Stable branches
are solid lines; unstable branches are dashed lines. We see the
emergence of separate 2SC and CFL hybrid branches along with
the occurrence of triplets.

PRL 119, 161104 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 OCTOBER 2017

161104-2



Pc ¼ 3.2 × 1035 dyn cm−2 the stable branch of 2SC hybrid
stars begins (solid black line).
This sequence is then interrupted by the 2SC → CFL

phase transition at P2 ¼ 3.11 × 1035 dyn cm−2, at which a
CFL core appears at the center of the star, within the
existing 2SC core. If there is a small energy-density jump
Δε2 at this transition, the hybrid branch will continue
(upper solid line). However, if Δε2 is large enough, then the
appearance of the CFL core destabilizes the star again, until
at a higher central pressure, thanks to the stiffness of the
CFL phase (s2 ¼ 1), a new stable sequence emerges.
We see that forΔε2=Δε1 greater than about 0.15 there are

two separate, disconnected hybrid branches, both of which
are disconnected from the nucleonic branch of stars with
Pc < P1. The disconnected stable branch of stars with a
CFL core constitutes a fourth family of compact stars,
adding to white dwarfs (not shown), ordinary neutron stars
(near-vertical black line at Pc < P1), and 2SC hybrid stars
(solid black line at Pc just below P2).
Moreover, for certain values of Δε2 there exist triplet

configurations: a set of three stars which have the same mass
but different central pressures, compositions, and radii. In
Fig. 2, this is particularly clear for Δε2=Δε1 ¼ 0.23.
In Fig. 3, we shown the mass-radius relation for the

sequences shown in Fig. 2. The disconnected branches
are, in principle, observable, because they are separated by
intervals of radius in which no star can exist. These
disallowed intervals cover ranges of hundreds of meters,
which is only slightly beyond the resolution of the
measurements expected imminently from NICER and
would provide motivation for future efforts to make radius
measurements more precise and increase the statistics. The
observation of two stars with very different radii will be a

hint of the presence of twins or triplets. In Fig. 3, the
maximum separation between the nucleonic branch and the
CFL branch is about 2 km, well within NICER’s resolution.
In Fig. 4, we show the profiles of the three members

of the triplet of stars, all with mass 1.975 M⊙, that occur
for the EOS parameter values used in Fig. 2, with
Δε2=Δε1 ¼ 0.23. The most compact member has a CFL
core and 2SC shell, with R ¼ 11.5 km. The next has a 2SC
core and R ¼ 12.5 km. The purely nucleonic member has
Rþ 13.5 km. The radii differ by 1–2 km, which is
potentially detectable by NICER.
The results shown in Figs. 2 and 3 were for various

values of Δε2 at fixed Δε1=ε1 ¼ 0.6. We now explore the
effects of varying both Δε1 and Δε2. Our results are
summarized in Table I. The notation describes the sequence
of branches encountered as the central pressure rises from
P1 up through P2; stable branches are denoted by “s” and
unstable branches by “u.” A comma separates the 2SC
sequence from the CFL sequence. For example, the top
curve in Fig. 2 would be denoted us; s (unstable 2SC
branch, stable 2SC branch, and then a stable CFL branch).
The bottom curve in Fig. 2 would be denoted us, us
(unstable 2SC branch, stable 2SC branch, then an unstable
CFL branch, and then a stable CFL branch). Of course, all
sequences eventually become unstable at a high enough
central pressure: We take this as given and do not append a
u to every denotation.
When both the phase transitions are weakly first order,

with small energy-density jumps (top left corner of Table I),
the phase transitions do not induce instabilities [39,40], so
as the central pressure rises above P1 there is a single
continuous family of hybrid stars, denoted s, s, first with a
2SC core and then with a CFL core inside that at the center
enveloped by a 2SC shell.
When both the phase transitions are strongly first order

(bottom right corner of Table I), the appearance of the

FIG. 3. The M-R relations for the parameter values defined in
Fig. 2. We have fixed the properties of the nuclear → 2SC
transition and the speed of sound in 2SC and CFL matter. For
the 2SC → CFL transition, we have fixed the critical pressure,
and we vary the energy-density discontinuity Δε2. The separate
2SC and CFL hybrid branches are clearly visible, along with the
occurrence of triplets.

(a)

(b)

(c)

FIG. 4. The profiles (here the log of pressure as a function of the
internal radius) of the three members of a triplet with masses
M ¼ 1.975 M⊙. Here “N” means the nuclear phase. The param-
eter values are the same as in Fig. 2, with Δε2=Δε1 ¼ 0.23.
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denser phase tends to destabilize the star, and both the 2SC
and CFL sequences are unstable (denoted as u, u).
From Table I, we see that the interesting phenomena

illustrated in Figs. 2 and 3 arise as we vary the parameters
of the EOS from the “s, s” domain (no unstable branches)
to the “u, u” domain (no stable branches). In the inter-
mediate parameter range, stability may be lost and regained
twice, once within the 2SC sequence and once within the
CFL sequence, creating the possibility of twin stars (with
the same mass but different radius) or even triplets (three
stars with the same mass but different radii). Three types of
twins are possible: N-2SC (hybrid star with a 2SC core has
the same mass as a nucleonic star), N-CFL (hybrid star with
a 2SC outer core and a CFL inner core has the same mass as
a nucleonic star), and 2SC-CFL (hybrid star with a 2SC
core has the same mass as a hybrid star with a 2SC outer
core and a CFL inner core).
The results above were obtained for stiff quark matter,

with s1 ¼ 0.7 and s2 ¼ 1. We now explore how our
results change if the 2SC phase is assumed to have a less
stiff EOS with s1 ¼ 0.5, which is still somewhat above
the expected value s ¼ 1=3 for noninteracting massless
quarks. The CFL phase remains maximally stiff, with
s2 ¼ 1. We lower the nuclear → 2SC transition pressure
to P1 ¼ 1.14 × 1035 dyn cm−2, corresponding to nucleonic
energy density ε1 ¼ 7.28 × 1014 g cm−3 and baryon den-
sity n1 ¼ 2.6nsat. We set Δε2SC=ε1 ¼ 0.15, corresponding
to P2 ¼ 1.83 × 1035 dyn cm−2, and fix Δε1=ε1 ¼ 0.6.
In Fig. 5, we show a set of mass-radius curves for these

parameter values, varying the energy-density discontinuity
Δε2 at the 2SC → CFL transition. In this case, the
nucleonic branch ends at a mass of about 1.74 M⊙, but
there are still families of stars that meet the maximum mass
constraint. We see that the 2SC branch is shorter and
shallower, but there can still be separate 2SC and CFL

hybrid branches, and triplets, with “forbidden” ranges of
radii covering several hundred meters.
A number of interesting astrophysical scenarios involve

twins and by extension also triplets discussed above. One
scenario involves a spin-up (in a binary) or spin-down (in
isolation) induced QCD phase transition in a compact star
which would be accompanied by a quick change in the star’s
global properties. This could induce drastic (depending on
how large the energy-density jump is) changes in spin, for
example, backbending [47–49], or a release of large portions
of gravitational binding energy in an explosion or collapse
[50–52]. Core-collapse supernovas provide yet another set-
ting where the QCD phase transition(s) can induce additional
shock wave(s) [53] and affect the supernova outcome. These
require an extension of the input EOS to finite temperatures;
see, e.g., Ref. [54]. Finally, future detections of gravitational
waves from binary neutron star inspirals and mergers may
provide independent constraints on the radii and masses of
compact objects; any density discontinuities in the EOS are
likely to leave their distinctive imprint in the datawhichwould
reveal a phase transition(s) to QCD matter [55–60].
Conclusions and outlook.—In this work, we investigated

the physical consequences of assuming that there are two
sequential first-order phase transitions in dense matter,
first from a nucleonic phase to a quark-matter phase that for
convenience we called 2SC and second from that phase
to a denser quark-matter phase that we called CFL. (Such
sequential first-order phase transitions emerge, for exam-
ple, in QCD-inspired models of dense quark matter
[19–22]). By using simple constant-sound-speed parame-
terizations of the quark-matter EOS, we were able to
explore, at least partly, the spaces of possible EOS and
the mass-radius properties of the resulting stellar sequen-
ces. The models were constrained to be causal (s1;2 ≤ 1)
and to satisfy the two-solar-mass observational constraint.

TABLE I. Summary of the stability properties of compact star
sequences as we vary the energy-density discontinuities Δε1 and
Δε2. See the text for an explanation of the notation. The presence
of twin hybrid configurations or triplet configurations is marked
by the square underbraces with information about the involved
phases (“N”means nuclear). The fixed parameters P1, P2, s1, and
s2 are as in Figs. 2 and 3.

Δε1=ε1
Δε2=Δε1 0.4 0.5 0.6 0.7

0.1 s, s s, s us; s
N-2SC

u; us
N-CFL

0.2 s, s s, s us; us
triplet

u; us
N-CFL

0.3 s, s s, s us; us
N-2SC;N-CFL

u; us
N-CFL

0.4 s, s s; us
2SC-CFL

us; u
N-2SC

u, u

0.5 s, s s; us
2SC-CFL

us; u
N-2SC

u, u

FIG. 5. The M-R relation for a less stiff 2SC phase (s1 ¼ 0.5)
with four different values of Δε2, keeping Δε1=ε1 ¼ 0.6. The
2SC branch is shorter, but there can still be separate 2SC and
CFL hybrid branches and triplets (the corresponding region is
magnified in the figure inset).
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We found that if the quark matter is fairly stiff (the
squared speed of sound being at least 0.5 in the 2SC phase
and 1 in CFL), then the sequence of two phase transitions
can yield characteristic phenomena: (a) Pairs of discon-
nected branches of hybrid stars, separated from each other
and from the nucleonic stars by unstable intervals, corre-
sponding to ranges of radii in which no stars can occur. This
represents a new branch of compact stars (fourth family)
which, for a given EOS, are denser than the hybrid stars that
arise when there is a single phase transition from nucleonic
to quark matter. (b) Connected with this, we find equal
mass “twin” stars of the type N-2SC, N-CFL which could
have been anticipated from the studies of ordinary hybrid
stars, but also 2SC-CFL twins which both contain quark
matter. (c) Triplet configurations: three equal-mass stars
with different radii and internal structures.
In the future, it would be useful to perform a more

comprehensive survey of the six-dimensional parameter
space of our model, looking for regularities and systematic
features, and to match the parameterization used in this study
with models based on different classes of QCD models
(ranging from the perturbative to QCD-inspired effective
ones; seeRefs. [15,16], and references therein). Extrapolating
from the current model, each additional first-order phase
transition may lead to another disconnected branch of
compact stars. Imminent observational advances, in particu-
lar, the science program of the NICER experiment, are
expected to provide further insight on the potentially complex
structure of the compact stars that can exist in nature.
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