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We develop a generalized framework for constructing many-body-interaction operations either in linear
time or in logarithmic time with a linear number of ancilla qubits. Exact gate decompositions are given for
Pauli strings, many-control Toffoli gates, number- and parity-conserving interactions, unitary coupled
cluster operations, and sparse matrix generators. We provide a linear time protocol that works by creating a
superposition of exponentially many different possible operator strings and then uses dynamical
decoupling methodology to undo all the unwanted terms. A logarithmic time protocol overcomes the
speed limit of the first by using ancilla registers to condition evolution to the support of the desired many-
body interaction before using parallel chaining operations to expand the string length. The two techniques
improve substantially on current strategies (reductions in time and space ranging from linear to
exponential), are applicable to different physical interaction mechanisms such as CNOT, XX, and
XX þ YY, and generalize to a wide range of many-body operators.
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Introduction.—Generating multibody entanglement is
the hallmark of most quantum information technologies.
Such technologies promise to harness entanglement across
multiple quantum registers to enable potentially significant
improvements in speed or precision compared to their
classical counterparts. Yet much of the difficulty in the
control of quantum systems lies in the constraint that
entanglement naturally arises on a local scale while scaling
improvements occur as a result of wave functions spread
over much larger spaces.
Quantum circuits generating entanglement across n

qubits in linear or sublinear time (circuit depth) in n have
been the subject of many studies, with direct use as
subroutines in quantum algorithms for factoring [1,2],
simulation [3–15], unstructured search [16], error correc-
tion [17], and solutions to systems of differential equations
[4,11,18,19]. Much progress has been made for construct-
ing many-body operations, either by finding architectures
where commuting two-qubit interactions could be executed
simultaneously on overlapping Hilbert spaces or via cases
where a particular many-body gate with known or sus-
pected sublinear implementation can be used to synthesize
other many-body circuits. The former has been used for so-
called collective Pauli operations on qubits in ion chains
[20–22], while the workhorse for the latter has been the
fanout operation [23,24], which has successfully lead to
O( logðnÞ) depth quantum circuits for various flavors of
quantum adders [25–27], with related arithmetic opera-
tions [1,28].
Other many-body interactions have also been syn-

thesized to mixed success. The ubiquitous many-control

CNOT has found general linear-depth implementations,
though with a relatively large prefactor [29–31].
Likewise, operations have been sought for rotating between
two arbitrary multiqubit states, use in sparse matrix gen-
eration [4,11,19,32], or, equivalently, pairwise inversion of
opposing spins in the unitary couple cluster (UCC) theory
[33–37]. Here, proposals have typically involved (based on
intended application) either multicontrol CNOT and arith-
metic gates with linear ancillary memory [11,19] or Trotter
decomposition of the dynamics into (exponentially many)
Pauli-string factors but with no ancillas.
In this Letter, we provide a formalism on how to directly

compose a wide class of such many-body entangling
operations (generated each by an equivalent Hermitian
many-body operator H̄) via two-(or few-)local interactions
and for which the above discussed protocols and algorithms
form important examples of its application. We aim to
minimize two standard figures of merit of the generic
circuit, namely, its depth, defined as the number of layers of
gates acting simultaneously on disjoint sets of qubits, and
its width, defined as the total number of qubits acted on by
the circuit [38]. We find a width-optimized general algo-
rithm, which we label the decoupling protocol, to compose
H̄ with zero or constant memory overhead and depth
limited to linear n scaling. Moreover, we demonstrate a
depth-optimized algorithm for simulating H̄, the selection
protocol, which has logarithmic depth and requires at most
linear memory overhead. We demonstrate the formalism
towards the linear or exponential speedup of the afore-
mentioned examples, given in our notation by equivalent
Hamiltonians:
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H̄ ¼

8>>>>>>>><
>>>>>>>>:

Q
n
i¼1 Xiðn-qubit Pauli stringsÞ�Q
n
i¼1 Pi

�
Xnþ1ðn-controlledXgateÞQn=2

i¼1ðσþ2i−1σ−2i þ H:c:Þðnumber or parity consvÞ�Q
n
i¼1 σ

þ
i

�
þ H:c:ðUCC-type operators;

sparse matrix generatorsÞ;

where Xi, Yi, and Zi are Pauli operators acting on qubit i,
σ�j ¼ ðXj ∓ iYjÞ=2, and Pi ¼ j1ih1ji. The unitary circuit
generated by the many-body composed dynamics can then
be written succinctly via the notation

½H̄�α ≡ expð−iαH̄Þ; ð1Þ

with rotation angle α.
In order to identify the type of Hamiltonians we

can compose, we first introduce notation and conventions.
For simplicity, we disregard local unitary transformations
between operators of the same rank. Let H ¼ H1 ⊗ H2 ⊗
� � � ⊗ Hn denote a separable Hilbert space. Then
Ri ¼ 1⊗ði−1Þ ⊗ R ⊗ 1⊗ðn−iÞ, where 1j denotes the identity
on Hj and R (≠ 1) is a 2 × 2-Hermitian matrix for
qubits (or d × d for qudits). We use the convention
rankðRiÞ≡ rankðRÞ, thereby ignoring contributions from
identities ⊗

|≠i
1j on other sub-Hilbert spaces. We write a

higher-rank Ri as the tensor sum R ¼ VðS ⊕ S⊥ÞV†, where
V is any local unitary transformation (i.e., S⊥ lies in the
kernel of S). It is by chaining together the lower-rank Si
factors that we will be able to construct our many-body
dynamics H̄.
Many-body decoupling protocol.—Our main tool is a

unitary (two- or few-body) operator Uj−1;j which will be
used to iteratively increase in length a string of Hermitian
operators S1S2…Sj acting on the system. However, recall
that generally Sj will not be full rank, and so Uj−1;j will
invariably have to also act outside the support of S. Thus,
our protocol will have to execute the desired system
dynamics (given by H̄) while leaving the rest of the
Hilbert space (namely, the kernels of Sj) intact. A condition
to using the protocol is that a Ui;j can be found such that

U†
i;jRiUi;j ¼ SiRj þ S⊥i þ SiR⊥

j ; ð2Þ

thereby incrementing the length of a string of nonidentity
Hermitian operators by one when acting on Ri. Then,
successively applying Eq. (2), one can show that the
following sum of operator strings of increasing string
length can be composed:

Ĥ ¼
�Y1

j¼n

U†
j;jþ1

�
R1

�Yn
j¼1

Uj;jþ1

�

¼
�Yn

i¼1

Si

�
Rnþ1 þ

Xn
m¼1

�Ym−1

i¼1

Si

�
ðSmR⊥

mþ1 þ S⊥mÞ

≡ H̄ þ Σres; ð3Þ

as shown in Fig. 1, where H̄ ¼ ðQn
i¼1 SiÞRnþ1. Therefore,

composing H̄ from two-body operators Ui;j usually creates
unwanted remainder terms Σres. However, the remainder
terms commute with H̄ while also acting as the identity on
the support of Rnþ1. Thus, we can find a one-body unitary
transformationMnþ1 such that it imparts an opposite phase
to Rnþ1 (and thus H̄) but does not change Σres [39]. The
requisite dynamics can then be recovered using the decou-
pling sequence (cf. Fig. 2)

½H̄�2α ¼ ½Ĥ�αM†
nþ1½Ĥ�−αMnþ1: ð4Þ

Here, to construct an effective Hamiltonian H̄ of string
length nþ 1, a total of 4n unitary operatorsUi;j are needed.
Note that if R is full rank, Eq. (2) reduces to U†

i;jRiUi;j ¼
RiRj and only half as many operators are used, since
decoupling is not required.
Many-body selection protocol.—We now present a

composition scheme that can further decrease the required
circuit depth for n-body operators from a OðnÞ to a
O( logðnÞ) scaling, at the cost of n − 1 ancillas
(cf. Figs. 3 and 4). Without loss of generality, we set
n ¼ 2m, where m ∈ N, and introduce two sets of qubit
indices, namely, register qubits qreg ¼ f1; 2;…; nþ 1g
containing the qubits of the desired string and ancilla
qubits qanc ¼ fnþ 2; 2;…; 2ng, where the latter are all
initialized to the j0i state.

FIG. 1. Generating the unitary dynamics ½Ĥ�α ¼ ½H̄ þ Σres�α of
Eq. (3) using one single-body and 2n Uj−1;j operators.

FIG. 2. Gate sequence for realizing the decoupling protocol
given in Eq. (4) using 4n Uj−1;j operators.
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Moreover, we introduce Toffoli-type unitary operators
Ci;jXk, whereby a NOT is applied to qubit k conditioned on
the state of qubits i, j which can be either register or ancilla
qubits. The operation can be written mathematically as,
e.g., Ci;jXk ¼ ½SiSjXk�π=2. For i; j ∈ qreg, Ci;j essentially
conditions on being in the support of both Si and Sj. If i,
j ∈ qanc, the operation is a standard Toffoli (or simply
letting Si ¼ j1ih1ji). Note that if n is not a power of 2, some
Ci;jXk operations can have both register and ancilla qubits
as controls. We define as in Fig. 3 compound operations

Ctot ≡
Ylog n
k¼1

� Yn−2k−1
l¼n−2kþ1

C2lþ1;2lXnþlþ1

�
; ð5Þ

Utot ≡
Y1

k¼log n

�Yn=2k
l¼1

Ul2kþ1;ðl−1
2
Þ2kþ1

�
U1;nþ1: ð6Þ

For the boundary case rankðSÞ ¼ 1, we set Utot ¼ 1, while
if S full rank, then Ctot ¼ 1. All the operations in the
brackets can be run parallel. The full selection protocol is
given by the sequence

½H̄�α ¼ U†
totC

†
totðC½R1�αÞCtotUtot; ð7Þ

see Fig. 4. The middle operator is defined as C½R1�α ¼
½R1�α if S full rank and ½j1ih1j2nR1�α otherwise. The result
of the sequence is that the many-body rotation is applied
only on states that are supported by R1S2…Sn, while
identity is applied otherwise. The selection protocol
improves on previous generic algorithms by quadratically
reducing the space requirements [23].

The following sections demonstrate how to apply the
decoupling and selection protocols to existing problems, to
either take advantage of specific two-body interaction
mechanisms or reduce the time and gate complexity of
known implementations. Further details of the derivations
are given in Supplemental Material [40].
Pauli strings.—Well-known formulas exist for forming

strings of Pauli operators in linear time (e.g., [41,42]),
which we first reproduce using our formalism. Since Pauli
operators are full rank, Ĥ ¼ S1S2…Sj ¼ H̄, and there is no
need for decoupling. The optimal form of Ui;j will depend
on the architecture and its natural interaction. A standard
entangling operation is via Ui;j ¼ CNOTij gates [41],
which applied as in Fig. 1 produce a many-body operator
(3) with Ri ¼ Xi. However, this interaction is natural for
neither superconducting nor trapped ion qubits. A native
gate for ion-trap designs is the Mølmer-Sørensen gate
(MSG), where commuting Ui;j ¼ ½XiXj�π=4 [20,43] inter-
actions can be applied simultaneously. We present a third
composition with the same size as the CNOT and MSG
circuits, designed for architectures with exchange gate
interactions, Gi;j ¼ 1

2
ðXiXj þ YiYjÞ, which is the fastest

perfect entangler for most circuit-QED quantum processors
[44,45], quantum dot spins coupled by a cavity [46], and
nuclear spins interacting via a two-dimensional electron gas
[47]. Here, Ui;j ¼ ½Gi;j�−π=2 is an ISWAP gate. Using
Eq. (2) and U†

i;jYiUi;j ¼ ZiXi allows us to construct a
Pauli string of length n using 2ðn − 1Þ ISWAPs. Since the
Pauli operators are full rank, one can drastically reduce the
depth of the circuit from OðnÞ to O( logðnÞ) by using (7),
with

Q
n
i¼1 Si ¼ U†

totR1Utot, without needing any ancillary
qubits. Note further that, instead of increasing the length of
the string using Ui;j, one can also use the inverse operation
to remove a qubit from the string, e.g., to form a
disconnected string from a nearest-neighbor architecture.
Number- and parity-conserving strings.—We now turn

to generating many-body operators that act conditionally
only within the fixed excitation-number subspace. These
are a natural fit for a two-body, exchange gate interaction,
Gþ

i;j ¼ σþi σ
−
j þ σ−i σ

þ
j , which has the same symmetry,

noting also its rank is smaller than dimðHi ⊗ HjÞ.
Defining F−

i;j ¼ −iðσþi σ−j − σ−i σ
þ
j Þ, we desire strings of

Ri;j ∈ fGi;j; Fi;jg. We choose Ui;k;l ¼ ½ZiGk;l�π=4 as the

FIG. 3. Gate sequence to compose an operator string of
length n ¼ 9, to run in Oðlog nÞ depth. Here, we assume that
1 < rankðSiÞ < rankðSi þ S⊥i Þ for i > 1. Small empty circles are
conditioning operators (projectors) on the support of S, while
solid circles are conventional Toffoli gates. The connected U are
the entangling operations from Eq. (2). Since R1 ≡ S1 is applied
only on the support of S2…S9, Ĥ (which is created by the Ui;j
tree structure) is also applied only on the support of H̄.

FIG. 4. Generalized version of Fig. 3, where all register
(respectively, ancillary) qubits qreg and qanc are compounded to
one circuit line. All operations that can be run in parallel are
synthesized to one box, with the number above it indicating how
many noncommutative time steps are necessary for each box. For
n ¼ 2m, a string of length nþ 1 is composed inO( logðnÞ) depth.
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(now three-qubit) entangling operation, giving
U†

i;k;lGi;jUi;k;l ¼ Fi;jGk;l þ Gi;jPkerfGk;lg, where R⊥
k;l ¼

1
2
ð1þ ZkZlÞ. Following the steps in Eq. (3), one obtains

Ĥ ¼
Yn=2
i¼1

R2i−1;2i þ
Xn=2−1
i¼1

�Yi
j¼1

R2j−1;2j

�
R⊥
2iþ1;2iþ2; ð8Þ

a many-body Hamiltonian that collectively excites and
deexcites n qubits in a number-conserving way. By
choosing Mn ¼ ½Zn�π=2, one can apply the decoupling
sequence (4) to pick out one particular number-conserving
string

½H̄�α ¼
�Yn=2
i¼1

R2i−1;2i

�α
: ð9Þ

More generally, parity can be conserved without conserv-
ing number [13] by applying local operations (Xi) to
transform operators in the string from Gi;j to
σþi σ

þ
j þ σ−i σ

−
j . As we detail in Ref. [40], the whole

sequence takes 2n − 4 Ui;j;k gates or, equivalently, 6n −
10 ISWAPS. Half as many are required if Ĥ is used instead.
Alternatively, the many-body dynamics can be generated
with the selection protocol at the cost of n − 1 ancillas. For
this, we can reuse Ui;j;k ¼ Ci;jXk for i; j ∈ qreg. This total
sequence uses a total of 2n − 4 entanglers Ui;k;l and nþ 4

Toffolis in a circuit depth of 4 logðnÞ þ 3.
Multicontrol CNOT gates.—C1;…;nXnþ1 gates have

widespread use in quantum and reversible computation,
including for circuit distillation [48], unstructured search
[16], factorization [1], error correction [17], and linear
equation system solvers [19]. For our construction,Ui;j;k ¼
½PiXjPk�π=2 (a Toffoli gate with a relative phase [31],
though a regular Toffoli can also be used) acts on three
qubits, recalling Pi ¼ j1ih1ji. The chaining operation is
given by Ui;j;kZiZjU

†
i;j;k ¼ −PiZjZk þ P⊥

i Zj, with
P⊥
i ¼ j0ih0ji. Repeated application of the chaining oper-

ation on R1;2 ¼ Z1Z2 following Eq. (3) gives [40]

Ĥn ¼ ð−1Þn
Yn
i¼1

PiZnþ1Znþ2 −
Xn
j¼1

ð−1Þj
Yj−1
k¼1

PkP⊥
j Zjþ1:

ð10Þ

ChoosingM ¼ ½X�π=2, one can use the decoupling protocol
(4) to obtain a multiqubit-controlled rotation around an
arbitrary angle. For a phaseless multicontrol CNOT gate, one
can compose instead the sequence

C1;…;nZnþ2 ¼ ½Ĥn�π=2M†
nþ1½Ĥn−1�−π=2Mnþ1; ð11Þ

using 4n − 2 Toffolis, cutting in half the size and depth of
the long-standing construction [29–31].
A more drastic reduction results with the selection

protocol, where Si ¼ Pi and thus rankðSÞ ¼ 1.
Equation (7) simplifies to

C2;…;nþ1X1 ¼ C†
totðCnþ1X1ÞCtot; ð12Þ

resulting in an n-control CNOT gate using 2ðn − 1Þ Toffoli
gates and 2 logðnÞ depth (cf. Fig. 4). This gives an
exponential speedup compared to the OðnÞ ancilla solution
found in Ref. [31].
Unitary coupled cluster.—Another many-body operator

which is frequently used (e.g., in quantum chemistry
algorithms for computing energy landscapes) is an operator
which transfers population between electronic orbitals
(encoded in the qubits) while maintaining the electron
number and spin. More generally, when the operator
couples arbitrary many-qubit states, it corresponds to a
sparse matrix off-diagonal element [19]. It takes the form

UCCðm; nÞ≡Ym
i¼1

σþi
Ymþn

j¼mþ1

σ−j þ H:c: ð13Þ

We have seen in the section on Pauli strings how to
construct R ¼ Qmþn

i¼1 Xi using 2ðmþ n − 1Þ entanglers.
Since

Qnþm
i¼1 Xi contains all 2mþn combinations of

products of σþ and σ−, we use U ¼ ½ðQm
i¼1 PiÞ

ðQn
j¼mþ1 P

⊥
j ÞXnþmþ1�π=2, which we know how to construct

from the previous section on multicontrol CNOTs, comput-
ing Ĥ ¼ U†RU to get

Ĥ ¼
Ymþn

i¼1

Xi −
�Ym

i¼1

σþi
Ymþn

j¼mþ1

σ−j þ H:c:
�

þ i

�Ym
i¼1

σþi
Ymþn

j¼mþ1

σ−j − H:c:

�
Xmþnþ1: ð14Þ

By setting M ¼ ½Zmþnþ1�π=2, we can apply the decoupling
protocol to construct the unitary dynamics of the
UCCðm; nÞ operator in a circuit with mþ nþ 1 qubits
(qmþnþ1 is an ancillary qubit) using 4ðmþ n − 1Þ ISWAPS
and 4ðmþ nÞ (relative phase) Toffolis:

½H̄�2α ¼ ½Ĥ�αM†½Ĥ�−αM ¼ ½UCCðm; nÞ�2α: ð15Þ

Conventional factorization of the UCCðm; nÞ terms into
Pauli strings scales exponentially as Oð2mþn−1Þ in the
number of two-qubit gates cost, whereas only 36ðmþ nÞ þ
Oð1Þ ISWAPS are required when using our decoupling
protocol. An even further decrease in the composition time
is once again achieved if the Pauli string and multi-CNOT
gates are produced using the selection protocol, down to a
depth of Oðlog nÞ.
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Architectural considerations.—Clearly, any time and
space complexity advantages will be subject to limitations
set by the architecture. The presence of OðnÞ ancillas
(needed for exponential speedup) is actually fairly easy to
include, as most architectures have ancillary electronic,
motional, or photon bus degrees of freedom. Despite much
worse lifetimes typically found in these states, the (linear)
tradeoff in the error rate is more than made up by an
exponential speedup in time and justifies their use for
many-body gates. Note previous generic O( logðnÞ) circuit
constructions require Oðn2Þ space [23], which may be
practically infeasible. The adjacency graph of bodies that
couple to each other in the architecture will also greatly
impact the composition time. For many-body operators
spanning much of the graph, the circuit depth can range
from O( logðnÞ) when the depth of the spanning tree
is O( logðnÞ), as in Refs. [49–55], to Oð ffiffiffi

nd
p Þ for

d-dimensional, nearest-neighbor architectures being
expected [56–58].
Conclusions.—We have developed two protocols, the

decoupling and selection compositions, to generate many-
body operators in OðnÞ time for zero or constant memory
overhead, and O( logðnÞ) time for OðnÞ ancillas, respec-
tively. The former enhances previous constant-overhead
approaches, with improvement ranging for prominent
examples from linear (multicontrol CNOT) to exponential
(UCC). Our construction to bring down further the runtime
to O( logðnÞ) depth also improves quadratically on the
space requirements of previous generic methods. Our
approach is generated directly from Hamiltonian dynamics,
allowing the straightforward incorporation of different
coupling mechanisms and architectures.
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