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We investigate the universal scaling of protein fluctuation dynamics with a site-specific diffusive model
of protein motion, which predicts an initial subdiffusive regime in the configurational relaxation. The long-
time dynamics of proteins is controlled by an activated regime. We argue that the hierarchical free energy
barriers set the time scales of biological processes and establish an upper limit to the size of single protein
domains. We find it compelling that the scaling behavior for the protein dynamics is in close agreement
with the Kardar-Parisi-Zhang scaling exponents.
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Proteins are molecular machines whose structure and
dynamics have been evolutionarily designed to perform
functional roles. While random sequences of amino acids
exhibit disorder and frustration, native sequences possess
funnel-like free energy landscapes, and at physiological
temperature can reversibly fold to unique global configu-
rations [1,2]. In their folded state, proteins possess specific
dynamical pathways that allow the motion required for
biological function. In the picosecond regime, proteins
fluctuate around a single structural minimum characterized
by the topology of protein connectivity [3]. In the nano-
second to microsecond regime, fluctuations lead to tran-
sition between metastable states which are of nearly equal
free energy. The slowest modes are biologically relevant for
protein-protein recognition and enzymatic activity [4,5].
The longest time scale is set by the kinetics of protein
folding and unfolding, which is in the millisecond regime
and longer.
Protein foldability and functionality occur in a narrow

range of temperature, salt concentration, pressure, and
volume: this implies a self-similarity in their dynamics.
Simultaneously, proteins have exquisitely precise biologi-
cal activity, which requires a high level of specificity [6]. It
is of paramount relevance to establish a precise relation
between dynamical pathways, which are protein specific,
and the dynamical observables shared across proteins as
a class.
Dynamical normal-mode pathways are well described by

the Langevin equation for protein dynamics (LE4PD),
which is the starting point of this study [7–9]. The
LE4PD represents proteins as chains of coarse-grained
sites interacting through an effective potential-of-mean-
force and the hydrodynamic interaction. In its normal mode
representation, the free energy landscape is decomposed
into a set of linearly independent, mode-specific, rough
free-energy surfaces, which display the relevant free energy
barriers and kinetic pathways [10].

In this Letter we investigate the emergence of general
scaling exponents in the specific dynamical behavior by
studying fourteen equilibrium molecular dynamics (MD)
simulations covering twelve various proteins. Input to the
LE4PD ranges from 50 ns to 1.23 ms equilibrium MD
trajectories. The starting structures were taken from NMR
or x-ray structures [11–17,22,23]. More details about the
proteins and MD simulation protocols can be found in the
Supplemental Material [17].
In a set of recent papers the LE4PD was shown to

provide protein-specific and site-specific quantitative pre-
dictions for the pico- to nanosecond dynamics measured by
nuclear magnetic resonance (NMR) spin-lattice relaxation
time, T1, spin-spin relaxation time, T2, and the nuclear
Overhauser effect (NOE), which qualifies the LE4PD as a
reliable representation of protein dynamics close to the
folded state [7–9]. Theoretical predictions correlate with
allosteric, catalytic, and binding activity reaching the
microsecond regime [10]. Here we address the shared
dynamical properties across proteins as a class, spanning
the short-time diffusive regime out to the longest time
scales of folding and unfolding [24].
In the LE4PD each molecule is represented by a set of N

coarse-grained sites, located in the α carbons along the
primary sequence. Given the bond li with i ¼ 1;…; N − 1
the structural coupling between bonds is represented
by the U matrix ðU−1Þij ¼ hl⃗i · l⃗ji=ðhjl⃗ijihjl⃗jjiÞ. Bond
dynamics is coupled through the hydrodynamic
interaction matrix, H, which in its preaveraged form
enters the LE4PD equation through the matrix product
L ¼ aHaT , where a is the matrix of the backbone
connectivity. The preaveraged hydrodynamic interaction
isHij¼ðζ̄=ζiÞδijþð1−δijÞr̄whr−1ij i, with ζ̄ ¼ N−1PN

i¼1 ζi
the site-averaged friction coefficient, rij the distance
between a pair of α carbons, and r̄w the hydrodynamic
radius corresponding to the fraction of a CG-site surface
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exposed to water. The stochastic equation of motion for
bond l⃗iðtÞ is

∂ l⃗iðtÞ
∂t ¼ −σ

X
j;k

LijUjkl⃗kðtÞ þ v⃗iðtÞ; ð1Þ

with σ ¼ 3kBT=ðl2ζ̄Þ, T the temperature, kB the Boltzmann
constant, and v⃗iðtÞ the random, delta-correlated bond
velocity. This linear Langevin equation is used for con-
structing a convenient basis for projecting the nonlinear
dynamics from the atomistically detailed simulations. Once
transformed into the diffusive normal mode coordinates,
mode-dependent energy barriers are used to rescale the
dynamics using a Kramers type of approach [8,25].
Input parameters are the system conditions (temperature,

solvent viscosity) and the equilibrium structural properties
from the configurational ensemble spanned by the atomistic
simulations. The diffusive normal mode representation is
obtained from the diagonalization of the matrix product
LU, with Q the eigenvectors and λa the eigenvalues. In the
diffusive modes Eq. (1) reduces to a set of N − 1 uncoupled
linear equations where the modes, ξ⃗aðtÞ ¼

P
iQ

−1
ai l⃗iðtÞ,

uniquely define the instantaneous conformation of the
macromolecule. One may notice that any anisotropy
inherent to the dynamics of l⃗iðtÞ in the MD trajectory is
inherited by the vector ξ⃗aðtÞ (see Supplemental Material
[17]). The mode basis spans the same space as the bond
vector basis with near linearity: hξ⃗a · ξ⃗bi ≅ δabl2=μa with
μa ¼

P
i;jQ

−1
ai U

−1
ij Qja, which can then decompose the free

energy landscape into a convenient set of mode-dependent
energy maps [8]. The length of the mode is defined as
L2
a ¼ l2=μa, while the associated diffusive time scale

τa ¼ ðσλaÞ−1. It is worth mentioning that our formalism
is distinct from the mechanistic view of the dynamics in
terms of the frequencies of normal modes of molecular
vibrations often adopted in molecular biophysics, which
lacks the dissipative dynamics and neglects hydrodynamics
and internal energy barriers that are important at long time
[3,26,27]. Internal dissipation due to fluctuations in the
hydrophobic region is included in our formalism by
accounting for an effective protein internal viscosity and
considering the relative exposure of each amino acid to the
hydrophobic region [7].
The first three global modes of the LE4PD, in most cases,

describe the protein rotation tensor. Internal modes, with
indexp ¼ 1;…; Np andNp ¼ N − 3, are characterized by a
small number of metastable minima whose depth, or the
barriers between them, are largest for the lowmode numbers
corresponding to the most collective, large-amplitude fluc-
tuations [9].We evaluate the barrier height for modep as the
median absolute deviation (MAD) [28] from the global
minimum on the mode orientational free energy surface,
where the MAD is an appropriate metric that is robust to
outliers and unevenly sampled distributions, and captures
the dispersion in a set of data (see Supplemental Material

[17]). Figure 1 shows that the free energy barriers scale
with mode length as E†

p ¼ ðϵLpÞγ with γ ¼ 0.93� 0.20
and ϵ ¼ 6.5 ðkcalmol−1Þ1=γ nm−1.
The direct proportionality between the free energy barrier

and mode length appears to extend from the 1 Å scale out to
the nanometer scale, which characterizes the overall size of
the protein. On the local length scale, where the specific
chemical nature of the protein primary sequence is most
important, the free energy barriers are still protein specific.
The observed scaling law is consistent with the hierar-

chical nature of the protein free energy landscape. On the
local scale (large p) the bonds fluctuate independently,
while large-amplitude correlated fluctuations occur when
the bonds, which are dynamically correlated on the length
scale of the mode, transition collectively (small p) [29].
The model connects the complex hierarchical nature of the
free energy landscape of a protein in solution to the
structure of a glassy fluid [30,31].
In the short-time regime, the protein fluctuates around

the minima of the free energy landscape: the dynamics are
diffusion controlled and well represented by the LE4PD
with free energy barriers not included. The LE4PD is an
extension of the traditional Rouse-Zimm approach to the
dynamics of macromolecules in solution [32,33], while it
also includes local semiflexibility and nonlinear connec-
tivity, anisotropic rotational dynamics, and the effect of the
hydrophobic core on the hydrodynamic interaction: these
play a role in the dynamics at short time [9,10].
The mode length scale scales with internal mode number

p as Lp ∝ p−β with β ¼ 0.41� 0.06, for all the proteins in
this study (see left panel of Fig. 2). The scaling indicates a
greater stability than in the case of the completely flexible
unfolded chain, where β ¼ 1 [32].
In the diffusive regime the average mean-squared dis-

placement (MSD) for one amino acid inside a protein can
be written in the center-of-mass frame as
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FIG. 1. Mode-dependent free energy barrier, E†
p ¼ ðϵLpÞγ ,

mode length scale Lp for all proteins with γ ¼ 0.93� 0.20
and ϵ ¼ 6.5 ðkcal mol−1Þ1=γ nm−1 (blue dashed line).
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1

N

XN
i¼1

hðR⃗iðtÞ − R⃗ið0ÞÞ2i

¼ 2

N2

XN
i¼1

XN
j¼iþ1

Xj−1
k;l¼i

XN−1

a¼1

QkaQlaðhξ⃗2ai − hξ⃗aðtÞ · ξ⃗að0ÞiÞ;

ð2Þ
where Ri is the position of the α carbons in the
coarse-grained model. At zero time difference, the
bead position length scale for internal mode p is
R2
p ¼ð1=N2ÞPN

i¼1

P
N
j¼iþ1

Pj−1
k;l¼iQkpQlpL2

p≈C2
sL3

p. The
diffusive mode time scale is predicted by the LE4PD
to scale with mode length as τ0;p ¼ CτLα

p, with
α ¼ 2.00� 0.41, where the index 0 indicates that free
energy barriers are not included in the short-time LE4PD.
Approximating Rp and τp with their scaling forms, and the
discrete sum as an integral

MSD≈2C2
sL3

max

Z
Np

p¼1

dpp−3β
�
1− exp

�
−

tpβα

CτLα
max

��
; ð3Þ

where Lmax is the largest internal mode length.
The short-time expansion of Eq. (3) scales as MSD ∝ tν

with ν ¼ ð3β − 1Þ=ðβαÞ. The LE4PD gives the exponents
β ¼ 0.41 and α ¼ 2.00, which leads to a strongly subdiffu-
sive short-time regime characterized by the exponent
ν ¼ 0.28. This exponent agrees well with the exponent ν ¼
0.26� 0.09 measured directly from MD simulations, see
Fig. 2, andwith the exponent ν ∼ 0.3 thatmodels thiyl radical
recombination experiments, where the exponent is shown to
be an inherent property of the polypeptide backbone,
independent of the primary sequence of the protein [34].
In the long-time regime the LE4PD accounts for the

effect of the local free energy barriers on the internal

dynamics, as the friction becomes mode dependent, includ-
ing thermal activation over the mode-dependent free energy
barrier [25] ζ̄ → ζ̄ exp½hE†

pi=ðkBTÞ�, leading to the slowing
of the mode time scale as

τp ¼ CτLα
p exp

�ðϵLpÞγ
kBT

�
: ð4Þ

This renormalization provides an average correction which
approximately accounts for the local barrier crossing, in
agreement with free energy landscape theories [1,30].
Figure 3 compares the LE4PD mode-dependent relaxation
times with and without inclusion of the free energy barriers.
At long times the dynamics are dominated by the largest

internal mode length scale, Lmax. For ðϵLpÞγ < kBT, the
relatively small barriers only slightly slow the mode
relaxation; therefore, the diffusive and barrier rescaled
time scales roughly coincide. As the fluctuations grow in
size the free energy barrier correction causes the mode
relaxation time to rapidly propagate out to folding time
scales at the nanometer length scale. This length scale
happens to be the typical size of single-domain proteins and
the analysis of a data set of 2-state folding times for 52
proteins [6] shows clustering around the line representing
Eq. (4). LE4PD relaxation times from the millisecond
unfolding or folding trajectories of ubiquitin by Piana et al.,
also agree with Eq. (4). This equation effectively extends to
the length and time scales of protein folding, suggesting
that the hierarchical roughness of the free energy landscape
is the leading contribution to the dynamical slowing down
of fluctuations and folding or unfolding.
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FIG. 2. Left: Mode length Lp and mode index for all proteins
and the scaling Lp ¼ Lmaxp−β with β ¼ 0.41 (blue dashed line).
Right: Predicted subdiffusive mean-squared displacement
hR2ðtÞi ∝ tν with ν ¼ 0.26 (blue dashed line), the average
MSD of all proteins (solid line), and the MSD of each protein
individually.
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FIG. 3. Reduced mode time scales, τ=ðηβl3Þ, for all proteins as
a function of mode length scale, Lp, where η, β, and l are solvent
viscosity, inverse temperature, and average effective bond length,
respectively. The red triangles show the reduced mode time
scales before free energy barrier correction and the scaling τ0;p ¼
CτLα

p with α ¼ 2.00� 0.41 (blue line). Free-energy barrier
corrected, reduced mode time scales (black circles) and the
scaling τp ¼ CτLα

p exp½ðϵLpÞγ=kBT� (magenta line). Reduced
time scales of folding for 52 proteins, plotted against the largest
mode length scale, approximately the protein radius of gyration
(green circles) [6].

PRL 119, 158101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

158101-3



When including the free energy barriers Eq. (3) becomes

MSD ¼ 2C2
sL3

max

Z
Np

p¼1

dpp−3β

×

�
1 − exp

�
−

tpβα

CτLα
max

exp

�
−
ðϵLmaxp−βÞγ

kBT

���
:

ð5Þ
Figure 4 compares the MSD from the simulation with the

theoretical LE4PD predictions. It can be observed that the
initial subdiffusive power law scaling at short times under-
goes a long crossover to a barrier-dominated slow growth.
At 300 K, below the folding temperature, the protein is
stable and the MSD levels off at around a microsecond. The
scaling form from the integral in Eq. (5) quantitatively
reproduces the shape of MSD with the largest internal
mode length of Lmax ¼ 0.6 nm (left panel of Fig. 4). Above
the folding temperature, the MSD is of the order of the size
of the protein, and levels off around the folding relaxation
time of ∼0.1 ms, described by Eq. (5) with Lmax ¼ 1.2 nm
(right panel of Fig. 4).
The scaling of free energy barriers with fluctuation

length sets an upper limit on the domain size in proteins.
The size distribution of protein domains found in biology is
peaked at around 100 amino acids and near zero by 300
amino acids [35,36]. This corresponds to proteins of
maximum size Rg ∼ 2.0 nm, with relaxation time of ∼1
min. This result indicates that protein domains larger than
the typical size found in nature would have relaxation times
exceeding biologically relevant time scales.
A simple representation that captures the proper scaling

exponents predicted by our approach is the theory of motion
on a random energy landscape. A general elastic manifold
embedded in a field of random pinning potentials results
qualitatively in hierarchical free energy landscapes of the
type observed here for proteins [37]. Following this analogy,

the origin of the roughness in the free energy landscape of the
proteins can be disorder,which is generated by the constantly
forming and breaking of the hydrogen-bonding network
between protein and solvent, on a time scale of picoseconds.
Protein function operates over a narrow temperature

window bounded by an upper melting temperature and a
lower glass transition temperature [30]. In this temperature
range the hydrogen bonding network is poised at critical
stability. The entropy-enthalpy compensation of individual
hydrogen bonds results in the metastability of multiple
protein configurations [38–40]. We conjecture that the
critical nature of the hydrogen bond network serves as
random energy perturbations to the protein, and that the
energy scale and length scale involved in making and
breaking of hydrogen bonds sets ϵ the energy per unit length.
We make the assumption that the motion of an average

protein site, in the field of its complex, rapidly varying,
many-body environment, can be described by harmonic
fluctuations subjected to a time-dependent energetic disor-
der. By making use of this reasonable assumption, the
LE4PD may be mapped to the directed polymer in random
media (DPRM) (see the Supplemental Material) [17], which
is the simplest model to describe finite-temperature motion
on a d-dimensional random energy landscape [41]. Specific
considerations of the folded state of proteins as fractal objects
has led to the conjecture that folded proteins are poised on the
edge of metastability where the space-filling dimension is
df > 2 and the spectral dimension is ds < 2 [42], while
analysis of the vibrational spectrum of globular proteins
predicts a general d ∼ 2 dimensional folded state [43]. Thus
protein dynamics maps onto the DPRM theory in roughly
(2þ 1) dimension, with the extra dimension given by time.
Through a straightforward mathematical transformation

the (2þ 1) DPRM model maps into the celebrated (d ¼ 2)
Kardar-Parisi-Zhang (KPZ) equation describing the surface
height of a solid growing by random deposition [44]. The
effective free energy of the DPRM is directly proportional to
the surface height of a growing solid in the KPZ model
[45,46]. Noting that the energetic disorder explains the
universal features of the protein dynamics in this work, we
conjecture that the origin of the general scaling of the free
energy barriers observed for all proteins is the rough surface-
height distribution of the KPZ universality class (see
Supplemental Material) [17]. In fact, we find it compelling
that the scaling exponents predicted by our formalism such
as the barrier exponent, 0.38 ¼ γβ (E†

p ∝ p−γβ) and the
early-time exponent, ν ¼ 0.26 are in close agreement with
the roughening exponent χ ¼ 0.39� 0.01 of the d ¼ 2KPZ
equation and the early-time growth exponent LðtÞ ∝ tν of
the (2þ 1) DPRM ν ¼ 0.240� 0.001 [47,48].
While biologydemands specificity in proteinmotions, the

narrow physical conditions in which proteins are biologi-
cally active suggests self-similarity and criticality in their
dynamical behavior. Concealed by the evident complexity
of protein dynamics should be simple universal laws. In this
Letter we show that underlying the specific dynamical
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FIG. 4. Mean squared displacement of the ubiquitin protein at
300 (left panel) and 390 K (right panel) from the ms scale
simulations of Piana et al. (solid line) [24]. The short-
time subdiffusive MSD ∝ tν with ν ¼ 0.26 (dashed line), and
the long-time crossover to the activated regime from Eq. (5)
(dot-dashed line).
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pathways of proteins is in fact a universal, hierarchical
scaling that suggests an origin in the directed polymer in
random media dynamical model, and the Kardar-Parisi-
Zhang universality class. This interesting analogy may
emerge once the dynamics are represented in the diffusive
normal modes of the LE4PD theory because it decomposes
the configurational free energy into linearly independent
modes, from which the universal scaling is readily identi-
fied. This hierarchical scaling in the free energy sets the
overall time scales and length scales of biological processes,
which involve the rearrangement of protein domains.

This work was supported by the National Science
Foundation Grant No. CHE-1362500. This work used
the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National
Science Foundation Grant No. ACI-1053575. In particular,
we acknowledge the D. E. Shaw group for providing us
with the Anton trajectories.

J. Copperman and M. Dinpajooh contributed equally to
this work.

*mguenza@uoregon.edu
†Present address: Department of Physics, University of
Wisconsin-Milwaukee, 3135 North Maryland Ave., Mil-
waukee, WI 53211, USA.

[1] J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G.
Wolynes, Proteins Struct. Funct. Bioinf. 21, 167 (1995).

[2] K. A. Dill and H. S. Chan, Nat. Struct. Biol. 4, 10 (1997).
[3] I. Bahar, A. R. Atilgan, and B. Erman, Folding Des. 2, 173

(1997).
[4] K.-I. Okazaki and S. Takada, Proc. Natl. Acad. Sci. U.S.A.

105, 11182 (2008).
[5] O. F. Lange, N.-A. Lakomek, C. Fares, G. F. Schroder,

K. F. A. Walter, S. Becker, J. Meiler, H. Grubmuller, C.
Griesinger, and B. L. de Groot, Science 320, 1471 (2008).

[6] D. De Sancho, U. Doshi, and V. Munoz, J. Am. Chem. Soc.
131, 2074 (2009).

[7] E. Caballero-Manrique, J. K. Bray, W. a. Deutschman, F. W.
Dahlquist, and M. G. Guenza, Biophys. J. 93, 4128 (2007).

[8] J. Copperman and M. G. Guenza, J. Phys. Chem. B 119,
9195 (2015).

[9] J. Copperman and M. G. Guenza, J. Chem. Phys. 143,
243131 (2015).

[10] J. Copperman and M. G. Guenza, J. Chem. Phys. 145,
015101 (2016).

[11] S. Vijay-Kumar, C. E. Bugg, K. D. Wilkinson, R. D.
Vierstra, P. M. Hatfield, and W. J. Cook, J. Biol. Chem.
262, 6396 (1987).

[12] R. Ishima, D. A. Torchia, S. M. Lynch, A. M. Gronenborn,
and J. M. Louis, J. Biol. Chem. 278, 43311 (2003).

[13] G. I. Lee, Z. Ding, J. C. Walker, and S. R. Van Doren, Proc.
Natl. Acad. Sci. U.S.A. 100, 11261 (2003).

[14] G.Gao,V. Semenchenko,S.Arumugam, andS. R.VanDoren,
J. Mol. Biol. 301, 537 (2000).

[15] J. Lu, D. P. Cistola, and E. Li, J. Mol. Biol. 330, 799 (2003).

[16] C. Williams, D. Rezgui, S. N. Prince, O. J. Zaccheo, E. J.
Foulstone, B. E. Forbes, R. S. Norton, J. Crosby, A. B.
Hassan, and M. P. Crump, Structure 15, 1065 (2007).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.158101 for the
simulation protocols and data analysis, which includes
Refs. [18–21].

[18] A. Amadei, M. A. Ceruso, and A. Di Nola, Proteins 36, 419
(1999).

[19] I. Daidone and A. Amadei, Comput. Mol. Sci. 2, 762
(2012).

[20] A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin,
and I. Bahar, Biophys. J. 80, 505 (2001).

[21] E. Lifshitz and L. Pitaevskii, Statistical Physics, Part 2:
Volume 9 (Butterworth-Heinemann, Oxford, 1980).

[22] D. E. Shaw, P. Maragakis, K. Lindorff-larsen, S. Piana, Y.
Shan, and W. Wriggers, Science 330, 341 (2010).

[23] K. Lindorff-Larsen, P. Maragakis, S. Piana, and D. E. Shaw,
J. Phys. Chem. B 120, 8313 (2016).

[24] S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Proc. Natl.
Acad. Sci. U.S.A. 110, 5915 (2013).

[25] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, New York, 2001).

[26] I. Bahar, A. R. Atilgan, M. C. Demirel, and B. Erman, Phys.
Rev. Lett. 80, 2733 (1998).

[27] H. Na, G. Song, and D. Ben-Avraham, Phys. Biol. 13,
016008 (2016).

[28] D. Ruppert, Statistics and Data Analysis for Financial
Engineering (Springer, New York, 2010).

[29] M. B. Jackson, J. Chem. Phys. 99, 7253 (1993).
[30] J. N. Onuchic, Z. Luthey-schulten, and P. G. Wolynes,

Annu. Rev. Phys. Chem. 48, 545 (1997).
[31] D. J. Wales, J. Chem. Phys. 142, 130901 (2015).
[32] M. Doi and S. Edwards, The Theory of Polymer Dynamics

(Oxford University Press, New York, 1986).
[33] A. Perico and M. Guenza, J. Chem. Phys. 83, 3103 (1985).
[34] L. Milanesi, J. P. Waltho, C. A. Hunter, D. J. Shaw, G. S.

Beddard, G. D. Reid, S. Dev, and M. Volk, Proc. Natl. Acad.
Sci. U.S.A. 109, 19563 (2012).

[35] D. Xu and R. Nussinov, Folding Des. 3, 11 (1998).
[36] A. Heger and L. Holm, J. Mol. Biol. 328, 749 (2003).
[37] L. Balents, J.-P. Bouchaud, and M. Mézard, J. Phys. I

(France) 6, 1007 (1996).
[38] M.Tarek andD. J. Tobias, Phys.Rev. Lett.88, 138101 (2002).
[39] S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci.

U.S.A. 99, 1763 (2002).
[40] Y. Levy and J. N. Onuchic, Annu. Rev. Biophys. Biomol.

Struct. 35, 389 (2006).
[41] M.Kardar andY. C. Zhang, Phys. Rev. Lett. 58, 2087 (1987).
[42] S. Reuveni, R. Granek, and J. Klafter, Phys. Rev. Lett. 100,

208101 (2008).
[43] D. ben-Avraham, Phys. Rev. B 47, 14559 (1993).
[44] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,

889 (1986).
[45] T.Halpin-Healy andY. C.Zhang, Phys.Rep.254, 215 (1995).
[46] S. Roux, A. Hansen, and E. L. Hinrichsen, J. Phys. A 24,

L295 (1991).
[47] B.M.Forrest andL. H.Tang,Phys.Rev.Lett.64, 1405 (1990).
[48] L. H. Tang, B. M. Forrest, and D. E. Wolf, Phys. Rev. A 45,

7162 (1992).

PRL 119, 158101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

158101-5

https://doi.org/10.1002/prot.340210302
https://doi.org/10.1038/nsb0197-10
https://doi.org/10.1016/S1359-0278(97)00024-2
https://doi.org/10.1016/S1359-0278(97)00024-2
https://doi.org/10.1073/pnas.0802524105
https://doi.org/10.1073/pnas.0802524105
https://doi.org/10.1126/science.1157092
https://doi.org/10.1021/ja808843h
https://doi.org/10.1021/ja808843h
https://doi.org/10.1529/biophysj.107.111849
https://doi.org/10.1021/jp509473z
https://doi.org/10.1021/jp509473z
https://doi.org/10.1063/1.4935575
https://doi.org/10.1063/1.4935575
https://doi.org/10.1063/1.4954506
https://doi.org/10.1063/1.4954506
https://doi.org/10.1074/jbc.M307549200
https://doi.org/10.1073/pnas.2031918100
https://doi.org/10.1073/pnas.2031918100
https://doi.org/10.1006/jmbi.2000.3976
https://doi.org/10.1016/S0022-2836(03)00629-6
https://doi.org/10.1016/j.str.2007.07.007
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.158101
https://doi.org/10.1002/(SICI)1097-0134(19990901)36:4%3C419::AID-PROT5%3E3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0134(19990901)36:4%3C419::AID-PROT5%3E3.0.CO;2-U
https://doi.org/10.1002/wcms.1099
https://doi.org/10.1002/wcms.1099
https://doi.org/10.1016/S0006-3495(01)76033-X
https://doi.org/10.1126/science.1187409
https://doi.org/10.1021/acs.jpcb.6b02024
https://doi.org/10.1073/pnas.1218321110
https://doi.org/10.1073/pnas.1218321110
https://doi.org/10.1103/PhysRevLett.80.2733
https://doi.org/10.1103/PhysRevLett.80.2733
https://doi.org/10.1088/1478-3975/13/1/016008
https://doi.org/10.1088/1478-3975/13/1/016008
https://doi.org/10.1063/1.465418
https://doi.org/10.1146/annurev.physchem.48.1.545
https://doi.org/10.1063/1.4916307
https://doi.org/10.1063/1.449216
https://doi.org/10.1073/pnas.1211764109
https://doi.org/10.1073/pnas.1211764109
https://doi.org/10.1016/S1359-0278(98)00004-2
https://doi.org/10.1016/S0022-2836(03)00269-9
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1051/jp1:1996112
https://doi.org/10.1103/PhysRevLett.88.138101
https://doi.org/10.1073/pnas.042697899
https://doi.org/10.1073/pnas.042697899
https://doi.org/10.1146/annurev.biophys.35.040405.102134
https://doi.org/10.1146/annurev.biophys.35.040405.102134
https://doi.org/10.1103/PhysRevLett.58.2087
https://doi.org/10.1103/PhysRevLett.100.208101
https://doi.org/10.1103/PhysRevLett.100.208101
https://doi.org/10.1103/PhysRevB.47.14559
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1016/0370-1573(94)00087-J
https://doi.org/10.1088/0305-4470/24/6/008
https://doi.org/10.1088/0305-4470/24/6/008
https://doi.org/10.1103/PhysRevLett.64.1405
https://doi.org/10.1103/PhysRevA.45.7162
https://doi.org/10.1103/PhysRevA.45.7162

