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Entanglement in quantum mechanics contradicts local realism and is a manifestation of quantum
nonlocality. Its presence can be detected through the violation of Bell, or Clauser-Horne-Shimony-Holt
(CHSH) inequalities. Paradigmatic quantum systems provide examples of both, nonentangled and
entangled states. Here, we consider a minimal complexity setup consisting of six Majorana zero modes.
We find that any allowed state in the degenerate Majorana space is nonlocally entangled. We show how to
measure (with available techniques) the CHSH-violating correlations using either intermediate strength or
weak measurement protocols.
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Introduction.—Majorana zero modes are particular non-
Abelian quasiparticles that reflect the topologically non-
trivial character of the underlying system. Over less than a
decade, Majorana zero modes (MZM) have crossed the line
frommathematically intriguing solid state manifestations of
Majorana’s original particles [1–3], to experimentally real-
izable entities [4–6]. Being a class of non-Abelian anyons
[7,8], MZM offer a paradigm for fault-tolerant information
processing [9]. Following initial experiments [10–15], we
are now at the stagewhere specific platforms for engineering
and manipulating Majoranas [16–18] are being imple-
mented. It is broadly felt that implementations of topological
states of matter for quantum information processing should
rely, first, on a thorough understanding of quantum states
defined by Majorana zero modes. Interestingly, a unique
property ofMZM is that theymay constitute a manifestation
of quantum nonlocality. Indirect observable signatures
emerging from nonlocal MZM (albeit not a proof of their
nonlocality) have been studied earlier in setups based on
mesoscopic superconductors [19–21] or coupled Majorana
zero modes [22,23].
Nonlocality is an indispensable pillar of quantummechan-

ics. For a systemmade of at least two particles, nonlocality is
a manifestation of quantum entanglement between spatially
distinct degrees of freedom. For paradigmatic systems, an apt
example being two spin-1=2 particles, it is possible to
construct both entangled (e.g., a singlet) and nonentangled,
i.e., product (e.g., triplet-1) states [24]. Quantum nonlocality
is quantified by Bell’s inequality [25], or, in a manner that is
more conducive to experimental testing [26,27], by the
violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [28]. Entanglement properties of Majorana sys-
tems have been explored as a source of nonlocality [29] for
applications to certifiable random numbers generation [30]
and for extending protected operations beyond braiding [31].
The focus of the present Letter is the direct observability

of distinct entanglement features of quantum states in the

degenerate space defined by Majorana zero modes. We
identify a system of minimal complexity (minimal number
of MZM). For that system, (i) we show that any allowed
quantum state in the degenerate space defined by a set of
MZM is nonlocally entangled, (ii) we then demonstrate
how such entanglement can be detected within technologi-
cally feasible measurement platforms, and finally, (iii) we
show how our entanglement detection protocol can be
realized within weak measurement operations.
Model.—Our system consists of a multiterminal junction

made up of an even number of one-dimensional topological
superconductors (branches) depicted in Fig. 1(a). They all
have a common end point at the center. Such junctions can
be engineered experimentally with semiconductor wires
[10–12,14] or magnetic impurity chains [13]. Each seg-
ment, α ∈ f1;…; 2Ng, of this setup consists of a 1D
spinless p-wave superconductor characterized by a bulk
excitation energy gap, Δα, and by zero-energy MZM at the
end points, γα, γ0α, localized at the wire’s boundaries. The
dynamics of these MZM is underlined by the algebra
fγα; γβg ¼ 2δα;β, fγα; γ0βg ¼ 0. The wire Hamiltonian at
energies well below the gap is given by Hα ¼ ϵαγαγ

0
α,

where ϵα ∼ e−lα=ξα is exponentially small with the wire’s
length, lα. The latter is larger than the superconductor
coherence length [3–5] ξα ∝ 1=Δα. We also assume ϵα ¼ 0,
which is a valid assumption as long as the duration of the
measurement protocol is not too long. At the junction, the
Josephson coupling between each pair of branches, α, β
results in a low energy coupling between the corresponding
Majorana end states. This is described by the tunneling
Hamiltonian [3,32]HT ¼ P

α;βtα;βγ
0
αγ

0
β, which, generically,

pairs up the 2N Majorana zero modes, γ01;…; γ02N , to finite
energy states with energies ∼minftα;βg. These states are
then projected out of the degenerate ground-state space.
The MZM fγαg far from the junction [see Fig. 1(a)]
represent the remaining zero energy degrees of freedom,
which span a 2N degenerate ground state. The Majorana
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subspace does not accommodate a well-defined number of
fermions: it may exchange pairs of fermions with the
underlying superconductor. It follows that the parity of
the Majorana system, P ¼ i

Q
2N
j¼1 γj, is a good quantum

number; hence, the degenerate ground-state space consists
of two subspaces, each of a definite parity. Without loss of
generality, we may restrict ourselves, in the low-energy
space, to states in the 2N−1-dimensional odd subspace. We
will study a minimal complexity setup consisting of 2N ¼
6 MZM.
The MZM, γ1;…; γ2N , can be partitioned into two

different sets, left (L) and right (R), each of which is to
be probed by a separate external detector. The detectors can
be tuned to measure any combination of pairs of Majorana
products. Physically, this is a measurement of the occu-
pancy of certain Dirac fermions degrees of freedom,
constructed from the Majorana degrees of freedom.
Details of the measurement procedure are discussed below.
An example to be utilized below is depicted in Fig. 1(a),
where the L set consists of γ1, γ3, γ5, and the coupled
detector can measure any operator of the form

ÔL ¼−iðcosθLγ1γ3þ sinθL cosϕLγ3γ5þ sinθL sinϕLγ5γ1Þ:
ð1Þ

Note that the expectationvalues of themeasured observables
are bounded,−1 ≤ hOLi ≤ 1 (the eigenvalues of the bilinear

Majorana products are �1). Genuine quantum correlations
underlying a state can be identified through the expectation
values of correlated measurements. Specifically, a state that
can be described within a local hidden variable theory (also
known as local realism), satisfies the CHSH inequality [28]

C≡ jhÔLÔRi− hÔLÔ
0
Rijþ jhÔ0

LÔ
0
RiþhÔ0

LÔRij≤ 2; ð2Þ

where ÔL, Ô
0
L and ÔR, Ô

0
R are pairs of spatially separable

sets of observables. Instead, for quantum nonlocally
entangled states, it is possible to choose the operators such
that [33] 2 < C ≤ 2

ffiffiffi
2

p
, hence, providing evidence of

genuine quantum correlations. Equation (2) is an equivalent
formulation of Bell’s inequality [25,28], which, relying only
on averaged correlation outputs, can be tested directly by
averaging over repeated measurements, including weak
measurements.
A quantum system generically realizes both entangled

states that violate Bell’s (hence, CHSH) inequalities and
product states. The novel aspect of our work is that we
show that, in the degenerate space spanned by Majorana
zero modes, any state is nonlocally entangled. In other
words, one can always find (at least) one partitioning of the
MZM into two spatially separable sets, where the CHSH
inequality is violated. Loosely speaking, for any state in the
degenerate ground space, it is possible to design nonlocal
measurements that reveal intrinsic nonlocality.
To begin with, we realize that establishing the CHSH

relations requires the measurement of noncommuting
observables for each of the separated-in-space parts of the
system, i.e., the L and R sets. For observables bilinear in the
elementary MZM [cf. Eq. (1)], this requires a minimum of
three Majorana operators for each set. Therefore, the
minimal complexity setup appropriate for our purpose is
a multiterminal junction consisting of six branches (six
MZM) [cf. Fig. 1(a)].We consider a generic state of the four-
degenerate odd parity ground manifold. Following the
labeling of the Majoranas in Fig. 1(a), such a state is
parametrized as

jψi ¼ Ad†1;3d
†
4;2d

†
5;6j0i þ Bd†1;3j0i þ Cd†4;2j0i −Dd†5;6j0i;

ð3Þ

where jAj2þjBj2þjCj2þjDj2¼1. Here,wehave introduced
the fermionic degrees of freedom, d†1;3¼ðγ1þiγ3Þ=2
d†4;2 ¼ ðγ4 þ iγ2Þ=2, d†5;6¼ðγ5þiγ6Þ=2, and the state j0i
is defined by d1;3j0i¼0, d5;6j0i¼0, d4;2j0i¼0. Throughout
our analysis, wewill switch between Fock space states, spin-
1=2 states, and Majorana notation.
Consider the partitioning depicted in Fig. 1(a): γ1, γ3, γ5

constitute the (L) set; γ2, γ4, γ6, the (R) set. The operators
ẐL ≡ −iγ1γ3, X̂L ≡ −iγ3γ5, and ŶL ≡ −iγ5γ1 satisfy the
Pauli matrix algebra, σz ¼ ẐL, σx ¼ X̂L, and σy ¼ ŶL. It
follows that the measurement of an operator of the form of

(a) (b)

(c) (d)

FIG. 1. (a) Multiterminal junction of topological superconduct-
ing wires (blue) hosting Majorana zero modes at their ends (red
dots). The Majorna end-states at the junction (fading red) are
gapped up and the six Majorana end states (solid red dots)
γ1;…; γ6 constitute the low energy excitations of the system. A
left detector (not shown) measures the operators indicated by
solid (green) arrows, which are labeled by the corresponding spin
algebra operators, e.g., Z ¼ −iγ1γ2 playing the role of σz. Dashed
(orange) arrows define the operators measured by the right
detector. Panels (a)–(d) show different possible partitionings into
left and right sectors with the corresponding operators. CHSH
inequalities are necessarily violated in at least one of the
partitionings in (a)–(d).
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Eq. (1) can be mapped onto the measurement of ÔL ¼ σ̂ ·n,
where σ̂¼ 2Ŝ is a spin-1=2 operator and n≡ ðsinθL cosϕL;
sinθL sinϕL;cosθLÞ. Analogously, ẐR≡−iγ4γ2, ŶR≡
iγ2γ6, and X̂R ≡ −iγ6γ4 can be identified with Pauli
operators of the right set. In such spin-1=2 language, the
state jψi reads jψi¼Aj↑L↑RiþBj↑L↓RiþCj↓L↑Riþ
Dj↓L↓Ri, where j↑ii j↓ii are the eigenstates of Ẑi
(i ¼ L, R). The maximal value of the CHSH correlation
C in Eq. (2) is given by

C135j246 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jAD − BCj2

q
; ð4Þ

where the subscript indicates the partitioning in which the
measurement is performed. For any state, 2 ≤ C135j246 ≤
2

ffiffiffi
2

p
, and C135j246 ≠ 2 signals nonlocal correlations, which

happens unless AD − BC ¼ 0. Operationally, this means
that, if AD − BC ≠ 0 one can select the coefficients θL, θR,
ϕL, ϕR to construct a proper set of operators that violate the
CHSH inequality.
Though a given state might not violate the CHSH

inequality with measurements within the specific L and R
sets, it can still lead to a violation of the CHSH inequality
with a different partitioning of the MZM. The new
partitioning will be nonlocal in the old L and R sets. For
example, a different partitioning consisting of the sets ~L and
~R is depicted in Fig. 1(b), where the left detector is connected
to γ5, γ6, γ4 while γ1, γ3, γ2 are connected to the right
detector. In this case, we define he operators Ẑ ~L ≡ −iγ5γ6,
X̂ ~L ≡ −iγ6γ4, Ŷ ~L ≡ −iγ4γ5, and Ẑ ~R ≡ −iγ1γ3, Ŷ ~L ≡ iγ3γ2,
X̂ ~L ≡ −iγ2γ1.Mapping the problem to that of a two spin-1=2
system, we can write the state jψi in Eq. (3) as jψi¼
~Aj ~↑L

~↑Riþ ~Bj ~↑L
~↓Riþ ~Cj ~↓L

~↑Riþ ~Dj ~↓L
~↓Ri, where ~A ¼ A,

~B ¼ D, ~C ¼ B, ~D ¼ C, and j ~↑ii, j ~↓ii are the eigenstates of
~Zi. For the given A, B, C, D, the maximal violation of the
CHSH inequalities in the new partitioning [maximal with
respect of the choice of ÔL, ÔR, cf. Eq. (1)] is given by

C564j132 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jAC −DBj2

q
; ð5Þ

where C135j246 > 2 signals nonlocal correlations. This is
achieved unless AC − BD ¼ 0. Measurements of CHSH
inequalities following the partitionings depicted in panels
(c) and (d) of Fig. 1 yield C421j563 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jAB − CDj2

p

and C641j352 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jA2 þ C2 þD2 − B2j2

p
. The condi-

tion C135j246 ¼ C136j245 ¼ C456j123 ¼ C124j356 ¼ 2 can never
be satisfied; i.e., CHSH correlations will be nonlocal in at
least one of the four partitions considered in Fig. 1.
It is important, at this point, to make the following

observation. The partitioning of the MZM into two sets
naturally leads to the definition of operators satisfying spin-
1=2 algebra for each set. Different partitionings entail

different sets of spin operators. Such a construction
of operators is not unique for MZM. It can be done for
any quantum system whose state is spanned in a four-
dimensional space. Consider the case of two real, physical,
spin-1=2 degrees of freedom, associated with L and R,
respectively, which are geographically separated. One may
construct the corresponding sets of operatorsZi,Xi, Yi, as is
depicted in Fig. 1(a). Now, we would like to switch to
another partitioning [e.g., the one depicted in Fig. 1(b)],
involving ~R and ~L, respectively. Trying to express the spin
operators associatedwith this partitioning in terms of the real
spin operators, we have Ẑ ~R ¼ ẐL, and Ẑ ~L ¼ ẐL ⊗ ẐR. It
follows, then, that Z ~R and Z ~L cannot be measured by two
spatially separated detectors. This is in stark contrast with
the foregoing Majorana-based picture.
The statement that any state of the system violates

the CHSH inequalities in at least one of the partitionings
of Fig. 1 implies finite violation of CHSH inequalities.
This is quantified by introducing the maximal value
of CHSH correlations over the partitioning in Fig. 1,
C0ðjψiÞ≡max fC135j246; C564j132; C421j563; C641j352g. For any
jψi, C0ðjψiÞ − 2 is a positive finite quantity. Therefore, there
is a minimum violation of the CHSH inequality over all
states. From a standard minimization procedure over the
parameters A, B, C, D [34], we obtain

min
jψi

fC0ðjψiÞg ≈ 2.031: ð6Þ

Note that, since we restrict the analysis here to the four
configurations of Fig. 1, the minimum value obtained is, in
fact, a lower bound of the optimal minimum entanglement.
Measurement.—In order to implement the above ideas,

we need to measure operators of the form (1) and
correlations thereof. While the emerging picture is quite
general, we will demonstrate it by resorting to a specific
measurement protocol: weakly tunnel-coupling quantum
dots (QDs) to the multiterminal Majorana junction [35,36],
and then measuring their charge. Let us describe the
measurement procedure for operators associated with the
L and RMajorana sets. We correspondingly define L and R
detectors, each consisting of a double quantum dot tunnel-
coupled to the three MZM in the set, as shown in Fig. 2.
The coupling of the L detector to the corresponding MZM
is given by the Hamiltonian

Hdet;L ¼w3;Qγ3ðcQ;L−c†Q;LÞþw3;Pγ3ðcP;L−c†P;LÞ
þw1;Qγ1ðcQ;L−c†Q;LÞþw5;Pγ5ðcP;L−c†P;LÞ; ð7Þ

where cj;L, j ¼ Q, P are the electron destruction operators
of each dot of the pair (all electrons are spin polarized) and
wα;j are the tunneling matrix elements between the super-
conductor’s end points and the quantum dots. These dots
are tuned such that only one orbital level per dot is relevant
at the energy scales considered. The charge configuration
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of the double QD, ðnQ;L; nP;LÞ, with nj ¼ 0, 1 can be
detected by fast charge sensors, e.g., quantum point
contacts [37–44]. The possibly time dependent tunnel
coupling is controlled, e.g., by a nearby gate voltage
[45]. One initially prepares the decoupled double QD in
a generic superposition of singly occupied levels,
jϕ0i ¼ pLj0; 1i þ qLj1; 0i, where jpLj2 þ jqLj2 ¼ 1. The
tunnel coupling is then switched on for a finite time Δt
and is, subsequently, switched off. The state of the QDs
may be modified, and the new charge configuration is read
out by the charge sensors. Specifically, we access the
probability, PL

ð1;0Þ, of finding the double dots in the

configuration (1, 0).
While the strength and the duration of the QD-Majorana

coupling is adjustable, we consider, here, for simplicity, the
weak measurement limit. (Going beyond this limit is
discussed below [34].) Expanding the time evolution,
U ¼ e−iHdet;LΔt, due to the system-detector coupling for
small Δt, and setting, for simplicity, the initial state of the
double QD to pL¼−iqL¼−i=

ffiffiffi
2

p
and wα;j ∈R, the mea-

sured probability reads PL
ð1;0Þ≈1=2−ðηL−λLhÔLiÞðΔtÞ2 to

leading order in ηL¼ðjw1;Qj2þjw3;Qj2þjw3;Pj2þjw5;Pj2Þ=2,
λL ¼ ½ðw1;Qw3;PÞ2 þ ðw3;Qw5;PÞ2 þ ðw1;Qw5;PÞ2�1=2. Here,
ÔL takes the form of Eq. (1) with cos θL ¼ w1;Qw3;P=λL,
sinθLcosϕL¼−w3;Qw5;P=λL, sin θL sinϕL ¼ w5;Pw1;Q=λL.
For λLðΔtÞ2 ≪ 1 and ηLðΔtÞ2 ≪ 1, this procedure consti-
tutes a weak measurement of the operator ÔL. Tuning the
parameterswi;j; i ¼ 1, 3, 5 and j ¼ Q,P covers all operators
of the local algebra of the left (L) set. The same may be
repeated to measure the observables represented by the
operators ÔR of the right set, and the correlated measure-
ments implied by the CHSH inequality are, therefore,
executable. Specifically, referring to Fig. 2, one begins
with the configuration pL ¼pR ¼−iqL ¼−iqR ¼−i=

ffiffiffi
2

p
.

Tunnel coupling the MZM to the QDs, and then sensing

their final configuration, the probability to end up in the
ðnQ;L ¼ 1; nP;L ¼ 0; nQ;L ¼ 1; nQ;R ¼ 0Þ is

Pð1;0;1;0Þ ¼ PL
ð1;0ÞP

R
ð1;0Þ þ

ðΔtÞ4
6

ðη2L þ η2R þ λ2L þ λ2R

þ 2ηLλLhÔLi þ 2ηRλRhÔRi þ λLλRhÔLÔRiÞ;
ð8Þ

where λR ¼ ðw2;Qw6;PÞ2 þ ðw2;Qw4;PÞ2 þ ðw4;Qw6;PÞ2 and
ηR ¼ðjw2;Qj2þjw4;Qj2þjw4;Pj2þjw6;Pj2Þ=2. Equation (8)
provides us with a way to evaluate the correlators of the type
hÔLÔRi [cf. Eq. (2)]. To demonstrate how entanglement
(violation of CHSH) is detected concretely in our measure-
ment scheme, consider, specifically, the case of a state in
Eq. (3) prepared with A ¼ D ¼ 0. The state is maximally
entangled in the configuration of Fig. 1(a), and the operators
ÔL, Ô

0
L, ÔR, and Ô0

R required for the maximal violation of
the CHSH inequality [34,46] are obtained in our scheme by
tuning w5;P ¼ 0, w1;Q ¼ 0, w2;Q ¼ −w6;P ≪ w4;Q ¼ w4;P,
and w2;Q ¼ w6;P ≪ w4;Q ¼ w4;P, respectively. The same
state, CHSH-tested with the configuration of Fig. 1(b),
leads to no violation of the CHSH inequalities.
A few aspects of the measurement procedure are note-

worthy. First, since the operators of the left and of the right
sets commute, they can be measured simultaneously;
nonuniversal details of the time sequence concerning on-
and-off switching of the tunneling matrix elements are
immaterial. Second, the weak limit of the measurement
offers a simple interpretation of the results; however, the
essence of the analysis remains unchanged at stronger
system-detector interaction, although the calibration of the
detector may become more involved. Finally, the proposed
measurement protocol requires control of the individual
tunnel matrix elements between the dots and the wires in
order to measure different operators. This might present an
experimental challenge. The required protocol operations
may be realized by variants better suited to experimental
implementation, e.g., by controlling individual QD’s
energy levels, or possibly by Majorana-to-charge conver-
sion measurements [16].
Conclusions.—We have identified a minimal complexity

MZM array, a junction with six segments delineating an
eightfold degenerate subspace defined by six Majorana
zero modes. Unlike paradigmatic quantum states of two
spin-1=2 particles that may (e.g., spin singlet) or may not
(spin triplet-1) be entangled, we have shown that any state
in the four-dimensional fixed-parity degenerate space (e.g.,
odd parity) is nonlocally entangled. This comes with a
minimal bound on the violation of the CHSH inequality
[Eq. (6)]. We also presented a detector design based on
MZM-QD tunnel coupling, amenable to experimental
implementation, and showed how to obtain CHSH corre-
lation functions. Specifically, we discussed the limit of a
weak measurement protocol. This ubiquitous nonlocality,

FIG. 2. Measurement of CHSH correlations in a multiterminal
Majorana junction. The left and right measurement apparatus
consist of quantum dots (QL, PL,QR, PR) properly coupled to the
MZM via tunnel coupling (dotted lines) of strength wα;j. The
charge configuration of each dot is detected by a nearby charge
sensor, schematically depicted as a quantum point contact. The
measurement is performed by controlled time pulsed activations
of the tunnel coupling wα;j.
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expressed through nonlocal entanglement, reflects the
intrinsic property of MZM as carriers of a fractionalized
fermionic degree of freedom. Verification of nonlocal
entanglement requires repeated measurements of CHSH
correlations on replicas of the same state, with at least four
different partitionings (into L and R sets) of the Majorana
degrees of freedom. The CHSH inequality will be broken
for at least one of these partitionings.
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