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We introduce a matrix-product state based method to efficiently obtain dynamical response functions
for two-dimensional microscopic Hamiltonians. We apply this method to different phases of the Kitaev-
Heisenberg model and identify characteristic dynamical features. In the ordered phases proximate to the
spin liquid, we find significant broad high-energy features beyond spin-wave theory, which resemble those
of the Kitaev model. This establishes the concept of a proximate spin liquid, which was recently invoked in
the context of inelastic neutron scattering experiments on α-RuCl3. Our results provide an example of a
natural path for proximate spin liquid features to arise at high energies above a conventionally ordered state,
as the diffuse remnants of spin-wave bands intersect to yield a broad peak at the Brillouin zone center.
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Introduction.—The interplay of strong interactions and
quantum fluctuations in spin systems can give rise to new and
exciting physics. A prominent example is quantum spin
liquids (QSLs), as fascinating as they are hard to detect: they
lack local order parameters and are instead characterized in
terms of emergent gauge fields. On the experimental side,
spectroscopicmeasurements provide useful insights into such
systems, particularly by probing the fractionalized excitations
(e.g., deconfined spinons) accompanying the gauge field.
Such measurements can be related to dynamical response
functions, e.g., inelastic neutron scattering to the dynamical
structure factor. On the theoretical side, determining the
ground state properties of such quantum spin models is
already a hard problem, and it is even more challenging to
understand their dynamical properties.
Here, we present a combination of the density-matrix

renormalization (DMRG) ground state method and a
matrix-product state (MPS) based dynamical algorithm to
obtain the response functions for generic two-dimensional
spin systems. With this we are able to access the dynamics
of exotic phases that can occur in frustrated systems.
Moreover, it is also very useful for regular ordered phases
where one would conventionally use large-S approxima-
tions, which in some cases cannot qualitatively explain
certain high-energy features [1,2].
We demonstrate our method by applying it to the

currently much-studied Kitaev-Heisenberg model (KHM)
model on the honeycomb lattice,

H ¼
X
hi;jiγ

KγS
γ
i S

γ
j þ J

X
hi;ji

Si · Sj: ð1Þ

The first term is the pure Kitaev model exhibiting strongly
anisotropic spin exchange coupling [3]. Neighboring
spins couple depending on the direction of their bond γ
with SxSx, SySy, or SzSz (Fig. 1). The second is the

SUð2Þ-symmetric Heisenberg term. The KHM serves as
a putative minimal model for several materials, including
Na2IrO3, Li2IrO3 [4], and α-RuCl3 [5]. The pure model is
an exactly solvable spin-1=2 model stabilizing two differ-
ent Kitaev quantum spin liquids (KSLs): a gapped Z2 one
with Abelian excitations (the “A phase”) and one hosting
gapless Majorana and gapped flux excitations (the
“B phase”) [3]. If not stated otherwise, we use the para-
metrization J¼ cosα and Kγ ¼K¼2sinα. For α¼�ðπ=2Þ,
we obtain the pure Kitaev model in the B phase, which is
stable under time-reversal symmetric perturbations, as
pointed out by Kitaev. Numerical studies of the ground
state phase diagram of the KHM have shown an extended
QSL phase for small J’s and four symmetry broken phases
for larger J’s [4].
The dynamical response functions of the pure Kitaev

model are known exactly and reveal characteristic features
[6,7], such as a spectral gap in the dynamical spin structure
factor due to a spin flip not only creating gapless Majorana
but also gapped flux excitations. This feature is perturba-
tively stable to a small J [8], but the influence of J on high-
energy features (or nonperturbatively at low energies) is

(a) (b)

FIG. 1. (a) Green, red, and blue edges correspond to Kitaev
exchange couplings Sγi S

γ
j with γ ¼ x, y, z. (b) Allowed k vectors

(the red lines) for an infinitely long cylinder with circumference
L2 ¼ 6 and periodic boundary condition along N2. Black nodes
picture the position of the gapless Majorana cones.
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unclear and of ongoing interest [9]. More pressingly, there
appear to be proximate spin liquids [10,11], such as, possibly,
the currentlymuch-studied α-RuCl3 [2,5,11–19], whose low-
energy physics is consistent with spin waves on an ordered
background, but whose broad high-energy features resemble
those of a KSL. Specifically, for intermediate energy scales,
there are starlike features [2] apparently arising from a
combination of spin-wave and QSL physics.
In this Letter, we first revisit the ground state phase

diagram and confirm the previously found phases. The
infinite cylinder geometry allows us to numerically confirm
that the gaplessness of the KSL is robust throughout the
entire phase. Second, we use a recently introduced MPS
based time evolution algorithm [20] to obtain the dynami-
cal spin structure factor. We benchmark our method by
comparing it to exact results for the Kitaev model and find
good agreement. We calculate the spectra of different
(nonsoluble) phases of the KHM.Most notably, we identify
broad high-energy continua even in ordered phases, which
are, moreover, similar to the high-energy features in the
nearby spin liquid phase. This provides a concrete reali-
zation of the concept of a proximate spin liquid, which was
recently invoked in the context of neutron scattering
experiments on α-RuCl3.
Ground state phase diagram.—We use the infinite size

variant of the DMRG (iDMRG) algorithm on the KHM on
infinite cylinders to map out the phase diagram. We choose
cylinder geometries such that the corresponding momen-
tum cuts contain the gapless Majorana modes of the Kitaev
spin liquid. For the pure isotropic Kitaev model, there are
gapless Majorana cones on the corners of the first Brilluoin
zone, Fig. 1(b). The full KHM has a C6 symmetry, which
means that in the 2D limit these cones cannot shift. The
iDMRG method determines the ground state of systems of
size L1 × L2, where L1 is in the thermodynamic limit and
L2 a finite circumference of up to 12 sites, being well
beyond what is achievable in exact diagonalization. While,
traditionally, iDMRG is used for finding the ground state of
one-dimensional systems, it has become a fairly unbiased
method for studying two-dimensional frustrated systems.
The resulting phase diagram for L2 ¼ 12 is shown in

Fig. 2 (for the iDMRG simulations, we keep χ ¼ 1200
states), which agrees with previous studies [4,21–25]. For
this L2, the system is compatible with the sublattice trans-
formation that maps zigzag to antiferromagnetic (AFM) and
stripy to ferromagnetic (FM) [22]. Plotted are the ground
state energy and the entanglement or von Neumann entropy
S ¼ −Trρred log ρred of the reduced density matrix ρred for a
bipartitioning of the cylinder by cutting along a ring. Both
the cusps in the energy density and the discontinuities of the
entanglement entropy indicate first order transitions. A
careful finite size scaling is difficult because of the large
bond dimension needed, and thus it is not possible to make
definite statements about whether the transitions remain first
order in the limit L2 → ∞. The symmetry broken phases can

be identified by measuring the local magnetization. We
identify a Néel phase (−0.185 < α=π < 0.487) that extends
around the pure antiferromagnetic Heisenberg [26] point,
the corresponding zigzag phase (0.513 < α=π < 0.894),
a ferromagnetic phase around the pure FM Heisenberg
point (0.894 < α=π < 1.427), and its stripy phase (1.559 <
α=π < 1.815). The two KSLs between Néel and zigzag as
well as between FMand stripy are confirmed to be gapless, as
expected for theB phase. For example, ifL2 is amultiple of 6,
we use the finite-entanglement scaling approach [29–31] and
extract the expected chiral central chargec ¼ 1 for bothKSLs
[28], with each of the two Majorana cones contributing
c ¼ 1=2. Note that when a gapless spin liquid is placed on a
cylinder, the gauge field generically adjusts to open a gap
[34]. In order to see gapless behavior, we have to initiate
the iDMRG simulations in the gapless sector to access a
metastable state [28]. The gapped ground state having a
nonzero flux through the cylinder overestimates the stability
of theQSLphases. It is notable howwell thephaseboundaries
agree with those from the infinite projected entangled pair
state (iPEPS) simulations [21].
Dynamical spin structure factor Sðk;ωÞ.—Starting from

a ground state obtained using iDMRG, we calculate
Sðk;ωÞ by Fourier transforming the dynamical correlation
function Cγγðr; tÞ ¼ hSγrðtÞSγ0ð0Þi. The real-time correla-
tions can be efficiently obtained using a recently introduced
matrix-product operator based time evolution method [20].
This allows for long-range interactions resulting from
unraveling the cylinder to a one-dimensional system which
render standard methods like the time-evolving block
decimation inefficient. Following the general strategy laid
out in Refs. [35–37], we perform the simulations for an
infinite cylinder with a fixed circumference. Note that
the entanglement growth and the resulting growth of the

FIG. 2. Phase diagram for an infinite cylinder with circum-
ference L2 ¼ 12 obtained using iDMRG. The black line corre-
sponds to the ground state energy density, and the blue line to the
entanglement entropy for a bipartition of the cylinder into a left
and right half. (Insets) The ordering pattern of the magnetic
phases. Two spin liquid phases exist around the pure Kitaev
model (α ¼ 0.5π and 1.5π). The results of exact diagonalization
(ED) [4] and infinite PEPS [21] are illustrated at the top.
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required number of states is generically slow, as the ground
state is only locally perturbed, and thus long times can be
reached even in the cylinder geometry. We show results
obtained for 0 ≤ t ≤ T and, to avoid Gibbs oscillations, we
multiply our real-time data by a Gaussian (σt ≈ 0.43T).
This corresponds to a broadening in ω space (σω ≈
ð2.3=TÞ). We use linear prediction to allow room for the
tail of the Gaussian in real time, but we confirm that the
final results do not depend on its details [38]. Thence,

Sγγðk;ωÞ ¼ 1

2π

X
r

Z
∞

−∞
eiðωt−k·rÞCγγðr; tÞdt;

which is normalized as
R
Sγγðk;ωÞdkdω ¼ R

dk. Unless
stated otherwise, we present results for Sðk;ωÞ ¼P

γS
γγðk;ωÞ.

We benchmark the method by comparing our numerical
approach to exact results for the pure Kitaev model.
Figure 3(a) shows a comparison for the gapped Kitaev
model in the A phase with Kx=Ky;z ¼ 6, with the exact
solution for Szzðk ¼ 0;ωÞ shown in black. Our numerics
(with resolution σω ≈ 0.06 in the units shown) for an
infinite cylinder with L2 ¼ 10 (red) agrees well with such
features as gap, bandwidth, and total spectral weight. In the
real-time data (inset), while the numerics agrees with the
exact solution for the cylinder geometry, it overlaps with
the 2D result only until a characteristic time scale corre-
sponding to the perturbation traveling around the cylinder
and then feeling the static fluxes inserted by the spin flip.
More generally, we expect such time scales (after which 2D
physics becomes 1D) to be particularly significant for
systems with fractionalization. For Fig. 3(b), we take Kx ¼
Ky ¼ Kz ¼ −2 to be in the gapless KSL phase, the B
phase, at α ¼ ð3π=2Þ. Comparing the exact 2D result
(black) to our numerics for a cylinder of circumference
L2 ¼ 6 (red), we see qualitative similarities, such as a
spectral gap (the dashed lines; slightly obscured by our
finite-time window), a dip where the fluxes suppress the
van Hove singularity of the Majorana spectrum [6],
comparable bandwidth, and strong low-energy weight.
To better resolve the spectral gap, we rely slightly on
linear prediction [38] by using a real-time Gaussian
envelope with σt ¼ 0.56T, corresponding to σω ≈ 0.045.
Two striking quantitative differences are (i) the spectral gap
which for this circumference is approximately half that of
the 2D limit, and (ii) the presence of a delta peak on this gap
(≈4% of total spectral weight). The latter, present for any
cylinder, vanishes as L2 → ∞ [39]. The inset compares
exact real-time results for the cylinder [40] with our
numerics. Despite approximating the ground state of the
gapless sector using MPS, we find good agreement for
appreciable times.
After this benchmarking, we explore Sðk;ωÞ in different

phases of the KHM shown in Fig. 4, all with σω ≈ 0.06. The
pure Heisenberg FM (α ¼ π) can be solved in terms of

linear spin-wave theory (LSWT) and numerically captured
with bond dimension χ ¼ 2. Instead of this special point, in
Fig. 4(a) we show results for α ¼ 1.1π (corresponding to
K ¼ 0.65J), where we still find excellent agreement with
LSWT. Note that there is a small gap (≈0.05jJj) which is
absent in LSWT despite the presence of SUð2Þ-breaking
Kitaev coupling [4]. We do not observe any strong cylinder
effects on the dynamics, which is presumably related to
the short correlation length and the absence of fractional
excitations. The pure Heisenberg AFM (with small XXZ
anisotropy) in Fig. 4(b) shows appreciable deviations from
LSWT, with second order SWT [41] giving better agree-
ment. Moreover, the weight in the spin waves is approx-
imately halved, indicating the importance of higher order
magnon contributions. Staying within the Néel phase but
approaching the QSL, LSWT cannot even qualitatively
describe Fig. 4(c), with much weight in very broad high-
energy features unaccounted for.
Lastly, we focus on a parameter regime producing zigzag

ordering like that found in α-RuCl3 [2,11,12]. Figure 5
shows Sðk;ωÞ for four different choices of α: the first row
contains the exact solution for the pure AFMKitaev model,
and the subsequent rows are all numerical results within
the zigzag phase with increasing α. For each α, we show
Sðk;ωÞ at a fixed ω: the columns display representative

(a)

(b)

FIG. 3. Dynamical spin structure factor Szzðk ¼ 0;ωÞ from our
numerical approach compared with the exact result (the insets
show real-time data). Exact results were obtained following
Ref. [6], except for the blue curve in (b) [40]. (a) Gapped
KSL, A phase, on a cylinder with L2 ¼ 10 and anisotropic
couplings Kx ¼ −2 and Ky ¼ Kz ¼ −ð1=3Þ. (b) Gapless iso-
tropic KSL, B phase, with L2 ¼ 6 and α ¼ ð3π=2Þ.
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low-, mid-, and high-energy features, with parameters
L2 ¼ 12 and time cutoff T ¼ 10 corresponding to
σω ≈ 0.23. We average over the different symmetry broken
directions. Results for L2 ¼ 6 and T ¼ 40 reveal that, even
at this resolution, the high-energy features stay very broad
[28]. The first column shows the low-energy physics of the
Kitaev model being reconstructed into spin-wave bands,
with minima on the edges of the first Brillouin zone. For
α ¼ 0.7π and 0.8π, these obey the C6 symmetry, indicating
that the cylinder geometry locally looks to be 2D.
Interestingly, the high-energy physics of the ordered phases
is very similar to that of the pure Kitaev model: broad
features are centered around the symmetric Γ point, k ¼ 0,
with its characteristic energy and width simultaneously
decreasing as α increases. The interplay between these low-
and high-energy features then gives rise to different
midenergy shapes. In fact, the six spin-wave bands start
on the edges of the first Brillouin zone. As the energy

increases, these bands become increasingly diffuse, even-
tually overlapping in a very broad blob at Γ. Both the spin
waves and the blob sharpen as one moves away from the
nearby QSL. The persistence of the broad high-energy
features characteristic of the QSL across the transition into
the zigzag phase are the essence of the idea of a proximate
spin liquid. This concept was recently invoked for the
putative Kitaev compound α-RuCl3 [2,4,5,11]. However,
its detailed microscopic Hamiltonian, while not yet uni-
versally agreed upon, likely contains important terms
beyond the KHM studied here [13,42–44]. Note that in
Fig. 5, for α ¼ 0.7π at intermediate energies, there is a
six-pointed star whose arms point towards the edges of the
first Brillouin zone. It is interesting to note that if we do
not average over different symmetry broken directions, the
low-energy physics strongly breaks the C6 symmetry, yet
the six-pointed star at intermediate energies persists; thus,
even if we interpret these high-energy features as the
overlap of broad spin waves, at this point, the effect of
symmetry breaking has disappeared. Under what condi-
tions such a symmetry restoration occurs more generally is
an interesting question, as is the issue regarding which

(a)

(b)

(c)

FIG. 4. Sðk;ωÞ for cuts k ¼ ðkx; 0Þ in different phases of the
KHM with an ω resolution σω ≈ 0.06. Dashed lines show the
results from LSWT. (Insets) The data for all allowed cuts. (a) FM
phase for a cylinder with L2 ¼ 12. (b) Antiferromagnet with
small spin anisotropy without a Kitaev term (L2 ¼ 8). The solid
blue line shows next order spin-wave calculations [41]. (c) AFM
phase in proximity to the KSL (L2 ¼ 6).

FIG. 5. Sðk;ωÞ at three different energies for four models: KSL
at α ¼ 0.5π (analytic result, 2D) and zigzag order at α ¼ 0.55π,
0.7π, and 0.8π (with L2 ¼ 12).
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settings a broad response at intermediate and high energies
may generally be expected to occur, and to what extent it
may nonetheless be amenable to a quasiparticle description.
Conclusion.—We have presented a new method for

obtaining the dynamical properties of generic lattice spin
models in (quasi) two dimensions, which we expect to be
useful for many future studies. In the KHM, our study
reveals several features beyond spin-wave theory even in
the ordered phases, providing a concrete realization of the
concept of a proximate spin liquid.
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