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The interplays between different quasiparticles in solids lay the foundation for a wide spectrum of
intriguing quantum effects, yet how the collective plasmon excitations affect the quantum transport of
electrons remains largely unexplored. Here we provide the first demonstration that when the electron-
plasmon coupling is introduced, the quantum coherence of electrons in graphene is substantially enhanced
with the quantum coherence length almost tripled. We further develop a microscopic model to interpret the
striking observations, emphasizing the vital role of the graphene plasmons in suppressing electron-electron
dephasing. The novel and transformative concept of plasmon-enhanced quantum coherence sheds new
insight into interquasiparticle interactions, and further extends a new dimension to exploit nontrivial
quantum phenomena and devices in solid systems.
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When electrons move in solids, they interact with other
diversified quasiparticles, and these essential many-body
couplings modify the behaviors of electrons substantially.
For example, phonon or spin fluctuation mediated electron
pairing leads to superconductivity [1–3]. Polarons protect
carriers from scattering with charged defects and optical
phonons in hybrid organic-inorganic perovskites [4].
Plasmons, the harmonic oscillations of conduction electrons
with a coherent phase, may also affect the quantum behavior
of electrons. In particular, it has been revealed that the
electron-plasmon coupling results in the formation of
a new composite quasiparticle, i.e., plasmaron [5–7].
Nevertheless, how plasmon excitations tune the quantum
transport of electrons in solids still remains to be established.
On the other hand, it was found that quantum entangle-

ment survives during photon-plasmon-photon conversion
[8,9], which strongly suggests that the quantum nature of
the plasmons ensures high quantum fidelity even though a
single plasmon mode already involves a massive number of
electrons [8,10]. A natural question arises: Will plasmons
affect the quantum behaviors of electrons in a conceptually
similar, or different, manner? Here we exploit the weak
localization effect in graphene [11,12], a direct measure
of the constructive quantum interference of the electrons
[11–14], to address this fundamental issue, and discover
that electron-plasmon coupling can indeed improve the
coherent quantum characteristics in graphene substantially.

Plasmons cannot be directly excited in a pristine gra-
phene sheet by far-field light illumination due to momen-
tum mismatch [15]. In the present study, plasmons were
instead induced in graphene by nanocavity coupling
[16–21] from proximal Au nanoparticles (AuNPs) syn-
thesized using an established approach [22] (see more
details in Secs. I and IIIA of Supplemental Material (SM)
[23]). The AuNPs=Al2O3=graphene devices were then
fabricated as depicted in Fig. 1. The Al2O3 layer is about
2 nm thick to prevent charge transfer [39] between the
AuNPs and graphene. Figure 1(d) shows the optical
absorption spectra of the AuNPs, and a strong plasmon
resonance is featured at ∼550 nm.
Next we study how the plasmon excitation in the AuNPs

manipulates the quantum transport in graphene. Figure 2(a)
displays the relative conductivity [Δσ ¼ σðBÞ − σð0Þ] of
graphene as a function of magnetic field (B) at temperature
(T) of 1.5 K and gate voltage of 10 V, under laser illumination
with a wavelength of 532 nm close to the AuNP plasmon
resonance.Weak localization effectmanifested as a dip around
zero field in the Δσ-B curve [40–42] is featured for all the
cases, arising from the constructive quantum interference of
electronwaves,which is gradually suppressedby themagnetic
field (seemore descriptions inSec. IIAofSM[23]). Strikingly,
compared to the case without illumination, the weak locali-
zationmagnitude rises when the illumination is on and further
increases drastically with increasing illumination power (P).
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We then discuss the likely mechanisms leading to
such drastically enhanced weak localization effect. It could
be induced by changes in the carrier density (n) and
mobility (μ) of graphene [40,41] upon illumination.
However, the variations of n and μ in response to laser
illumination are too weak [<4% as shown in Fig. 2(b)] to
account for the giant increase of the weak localization
magnitude. Another possibility might be attributed to the
effect of the applied electromagnetic field on the graphene.
However, such a field effect was revealed to offer an
additional dephasing channel to suppress weak localization
[43–45]. A third possible factor could be the overheating of
graphene electrons caused by the illumination. However, if
such a thermal effect played a dominant role, the weak
localization magnitude would decrease with increasing
laser power [13,46], contrary to the revealed behaviors.
Based on the discussions above, the enhanced weak

localization effect in graphene can most probably be
attributed to the effect of the plasmon excitations in the
proximal AuNPs. To further validate the plasmonic origin,
magnetotransport was further performed under illumination
with different wavelengths but the same photon flux. For
532-nm illumination, weak localization is enhanced nota-
bly and returns to the initial state after removal of the
illumination [Fig. 2(c)]. This suggests that the weak
localization enhancement is a pure electronic effect without
irreversible atomic reconstruction. In sharp contrast, the
weak localization under 1064-nm illumination is almost
the same as that without illumination [Fig. 2(d)], which can
be attributed to the fact that this wavelength is far away
from the AuNP plasmon resonance. Moreover, no weak

localization enhancement is observed for the bare
Al2O3=graphene=SiO2=Si or graphene=SiO2=Si samples
under 532-nm illumination (see Fig. S2 in SM [23]). These
control experiments confirm unambiguously that the
enhanced weak localization effect in graphene must arise
from the plasmonic effect of the proximal AuNPs.
Because the weak localization magnitude is largely

determined by the phase coherence length [13,47], our
observation strongly suggests that the quantum coherence
in the graphene in proximity to the AuNPs is drastically
enhanced under laser illumination. To quantitatively
characterize this effect, the measured magnetoconductiv-
ities in Fig. 2(a) were fitted using the well-established
formalism adopted to describe weak localization effects in
graphene [11,40,42],
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ϕ;i;�Þ. Here Lϕ is the phase
coherence length above which the coherence is lost due to
inelastic scatterings, Li the elastic intervalley scattering
length, and L� the elastic intravalley scattering length. The
dephasing rate (τ−1ϕ ) can be extracted from the relation
τ−1ϕ ¼ D=L2

ϕ, where D ¼ V2
Fτtr=2 denotes the diffusion
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FIG. 1. Device schematics and characterizations. (a) Schematic
of the AuNPs=Al2O3=graphene device used in the transport
measurements under laser illumination. (b) Schematic of the
AuNPs capped with 1-octadecanethiolate protection layer.
(c) Scanning electron microscope image of a representative
device. The scale bar is 40 nm. (d) Optical absorption spectra
of the AuNPs on a quartz substrate.

FIG. 2. Enhanced weak localization effect by plasmon excita-
tion. (a) Relative conductivity Δσ ¼ σðBÞ − σð0Þ as a function of
the magnetic field B for a specific device under 532-nm
illumination with various powers. The dashed curves are the
weak localization fittings. (b) Carrier density n and mobility μ
versus laser power P. (c) Δσ as a function of B for another device
within an off-on-off cycle of 532-nm illumination. (d) Δσ as a
function of B within an off-on-off cycle of 1064-nm illumination.
The photon flux in (c) and (d) is the same (∼1 × 1011 s−1 mm−2).
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coefficient, VF≈1.1×106m=s the Fermi velocity [48,49],
and τtr ¼ μℏ

ffiffiffiffiffiffi
πn

p
=ðeVFÞ the momentum relaxation time.

As displayed inFig. 2(a), theweak localizationdata canbe
well fittedwithin this formalism. The derivedLϕ,Li,L�, and
τ−1ϕ as functions of P are plotted in Figs. 3(a) and 3(b),
respectively. It is evident that Lϕ (τ−1ϕ ) rises (drops) dra-
matically with increasingP, withLϕ varying from∼400 nm
at 0 μW to ∼1100 nm at 20 μW. Meanwhile, Li decreases
from ∼50 to ∼25 nm. Although the enhanced intervalley
scattering may contribute to the weak localization enhance-
ment [11,50,51], the increase in Lϕ plays a critical role in
enhancing the weak localization under resonant illumina-
tion, as detailed in Sec. IIB of SM [23].
It is noted that the universal conductance fluctuations

(UCF), manifested as reproducible fluctuations in theΔσ-B
curves [12,40], do not show a clear increasing amplitude
upon increasing the illumination power (see Fig. 2 and
Fig. S4 in SM [23]). As detailed in Sec. IIC of SM [23], the
UCFmagnitude in the present case depends not only on Lϕ,
but also on the thermal length LT , Li, and L� [52–55].
Qualitatively, the decrease in Li, L�, and LT upon resonant
illumination would suppress the UCF [52–55]; therefore,

the increase in Lϕ may not necessarily lead to a clear
enhancement in the UCF magnitude.
The dependence of the plasmonic origin on temperature

is further exploited in the low-temperature regime without
and with 532-nm illumination, respectively, as shown in
Figs. 4(a) and 4(b). It is evident that the enhancement of
quantum coherence disappears above 13 K, which is more
obvious from the derived T-dependent Lϕ and τ−1ϕ as
displayed in Figs. 4(c) and 4(d).
The dominant dephasing mechanism can be inferred

from the T dependence of τ−1ϕ [13,40–42,56]. As revealed
in Fig. 4(d), in the absence of plasmon excitation, τ−1ϕ ðTÞ
can be well fitted by the conventional electron-electron
dephasing mechanism [40,42], τ−1ϕ ðTÞ ¼ aT þ bT2 þ c,
where the first term arises from the interaction of an
electron with the fluctuating electromagnetic field induced
by the noisy movement of the neighboring electrons
(Nyquist dephasing) [40], while the second term arises
from the direct Coulomb interaction of the electrons [40]
with a, b, and c as constants. Meanwhile, the electron-
phonon scattering rate (τ−1e−ph) estimated from the model
based on the Boltzmann transport theory [57,58] is much
smaller than the experimentally derived τ−1ϕ . These results
demonstrate that electron-electron scattering is the domi-
nant dephasing mechanism in graphene at low temperature,
consistent with previous studies [40,41,59].
In the presence of plasmon excitations in the proximal

AuNPs, the electron-electron dephasing picture can still fit

(a) (b)

(c) (d)

FIG. 3. Plasmon-enhanced quantum coherence and the mecha-
nism. (a) Phase coherence length Lϕ, elastic intervalley scattering
length Li, and elastic intravalley scattering length L� as functions
of 532-nm laser power P, extracted from the weak localization
fittings in Fig. 2(a). (b) Extracted dephasing rate τ−1ϕ as a function
of P. The black curve is the fitting based on the phenomeno-
logical model described in Sec. III of SM [23]. (c) Schematic of
an electron trajectory (blue curve) in graphene without plasmon
excitation. The pairs of blue balls with yellow ties represent
inelastic electron-electron scattering events that break the phase
coherence. The red dotted circles indicate the unexcited plasmon
domains underneath the AuNPs. (d) Schematic of an electron
trajectory with plasmon excitation. The red shaded concentric
circles are domains of plasmon excitation, in which the inelastic
scattering is suppressed.

(a) (b)

(c) (d)

FIG. 4. Temperature dependence of plasmon-enhanced quantum
coherence. (a) T-dependent weak localization effect for a third
device without illumination. (b) T-dependent weak localization
effect with 532-nm laser illumination. (c) Extracted phase coher-
ence length Lϕ as a function of T without and with 532-nm
illumination. (d) Extracted dephasing rate τ−1ϕ as a function of T.
Fittings and calculation by adopting variousmodels are also shown.
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the τ−1ϕ ðTÞ behavior above 14 K. However, this picture fails
to describe the τ−1ϕ ðTÞ behavior below 14 K as revealed in
Fig. 4(d). Rather, the low-temperature behavior is better
fitted if an additional T4 term is taken into account
[τ−1ϕ ðTÞ¼aTþbT2þdT4þc, d being another constant].
Such deviations further imply the critical role of plasmon
coupling in enhancing quantum coherence, even though
this quantum coupling effect is unable to survive at high
temperatures (see more discussion in Sec. IV of SM [23]).
A microscopic phenomenological model is therefore

proposed to explain the discovered plasmon-enhanced
quantum coherence in graphene. With the excitation of
AuNPs plasmon under laser illumination, the strong near-
field couplings, namely, nanocavity modes [16–21],
between the AuNPs and graphene induce plasmon excita-
tions, i.e., simultaneous electron oscillations in graphene
under the AuNPs (see more discussion in Sec. IIIA of SM
[23]). As a consequence of multichannel damping, the
collective plasmon excitations form two-dimensional
domains centered at the AuNPs as schematically illustrated
in Figs. 3(c) and 3(d). For simplicity without losing the
essential physics, we adopt the scheme that the electron-
plasmon interaction is mainly responsible for the inelastic
scattering events when the electron trajectory passes
through the plasmon excitation domains [red shaded
regions in Figs. 3(c) and 3(d)], whereas the conventional
electron-electron interactions contribute to the inelastic
scattering events in other regions. Such a scheme is justified
as detailed in Sec. IIID of SM [23]. The total dephasing rate
can then be expressed as τ−1ϕ ¼ ð1 − ξÞτ−1e−e þ ξτ−1e−pl, where
ξ (≤1) denotes the fractional area of the plasmon domains,
τ−1e−pl the electron-plasmon scattering rate, and τ−1e−e the
electron-electron scattering rate. As theoretically analyzed
in detail in Secs. IIIB and IIIC of SM [23], τ−1e−pl is much

lower than τ−1e−e. Consequently, the total inelastic scattering
is effectively suppressed, leading to the enhancement of
quantum coherence.
At a deeper level, plasmons as the collective excitations

of electrons arise from the long-range Coulomb interaction
of the electrons. Although the estimated lifetime of plas-
mon in the present system is quite short, the persistent and
stable laser illumination drives such a system into a
dynamically equilibrium state, where the collective plas-
monic excitations can effectively define the steady plasmon
domains (see detailed discussion in Sec. IIIC of SM [23]).
Furthermore, the excitation of plasmon domains enhances
the effectiveness of screening, which in turn largely
exhausts the long-range component of the Coulomb inter-
action. This makes the constituent electrons of plasmon
domains invisible for transporting electrons, which con-
sequently reduce the electron-electron scattering rate.
The dependence of the plasmon-enhanced quantumcoher-

ence on the illumination power can bewell interpretedwithin
this phenomenological model. Under laser illumination, the

size of the plasmon domains gradually increases with
increasing P (see more details in Sec. IIID and Fig. S5 in
SM [23]); consequently, τ−1ϕ decreases continuously until the
plasmon domains cover nearly the whole area of the
graphene layer. Figure 3(b) shows that the phenomenological
model fits the experimentally obtained τ−1ϕ ðPÞ very well (see
more details in Sec. IIID of SM [23]).
The present study has demonstrated the vital role of

electron-plasmon coupling in enhancing quantum coher-
ence of electrons in solids. This conceptual discovery, in
principle, paves the way to the realization of nontrivial
quantum effects by tailoring the delicate coupling between
quantum quasiparticles. For example, the revealed strong
electron-plasmon coupling may eventually stabilize plas-
mon-mediated superconductivity [60]. Moreover, the dras-
tically enhanced quantum fidelity by electron-plasmon
coupling may promise versatile quantum device applica-
tions, especially for quantum computing [61].
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