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In thermal convection, roughness is often used as a means to enhance heat transport, expressed in Nusselt
number. Yet there is no consensus on whether the Nusselt vs Rayleigh number scaling exponent (Nu ∼ Raβ)
increases or remains unchanged. Here we numerically investigate turbulent Rayleigh-Bénard convection
over rough plates in two dimensions, up to Ra ≈ 1012. Varying the height and wavelength of the roughness
elements with over 200 combinations, we reveal the existence of two universal regimes. In the first regime, the
local effective scaling exponent can reach up to1=2. However, this cannot be explained as the attainment of the
so-called ultimate regime as suggested in previous studies, because a further increase in Ra leads to the second
regime, in which the scaling saturates back to a value close to the smooth wall case. Counterintuitively, the
transition from the first to the second regime corresponds to the competition between bulk and boundary layer
flow: from the bulk-dominated regime back to the classical boundary-layer-controlled regime. Our study
demonstrates that the local 1=2 scaling does not necessarily signal the onset of ultimate turbulence.
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Thermal convection plays an important role in a wide
range of natural and industrial environments and settings.
The paradigmatic representation of thermal convection,
Rayleigh-Bénard (RB) flow, in which a fluid is heated from
below and cooled from above, has received extensive
attention over the past decades [1–3]. One of the major
challenges in the studies of RB convection is to determine
the scaling relation of the Nusselt number (Nu), which is
the dimensionless heat flux, with the Rayleigh number
(Ra), which is the dimensionless temperature difference
between the two plates, expressed as Nu ∼ Raβ.
From similarity theory, Priestley [4] argued that β ¼ 1=3.

Assuming that the heat transport is independent of the cell
height and governed by the viscous boundary layers (BL),
Malkus [5] also derived that β ¼ 1=3. Later, Grossmann
and Lohse [6,7] showed that there is no pure scaling but
smooth transitions from BL to bulk dominated regimes.
However, for large Ra when the BLs have become turbulent,
Kraichnan [8] postulated that the flow reaches the so-
called ultimate regime, in which Nu scales according to
Nu ∼ Ra1=2ðln RaÞ−3=2, with ðln RaÞ−3=2 as the logarithmic
correction term. This ultimate regime was also predicted by
Grossmann and Lohse [9], who modeled this logarithmic
behavior with an effective scaling exponent of β ≈ 0.38, for
Ra around 1014. Experimentally, for Ra ≈ 1014 the onset of
such a regime has been observed [10,11]. The logarithmic
correction term has minor impact for very large Ra. In the
asymptotic ultimate regime β ¼ 1=2, and the heat transport
is independent of viscosity and therefore the scaling can be
extrapolated to arbitrarily large Ra, as suggested for both

geophysical and astrophysical flows. This asymptotic ulti-
mate 1=2 scaling has numerically [12,13] and experimen-
tally [14,15] been observed in the so-called “homogeneous”
or “cavity” RB turbulence, where no BLs are present.
Clearly, the interplay between BL and bulk flow deter-

mines the effective scaling exponent [6]. To better understand
the role of the BLs, it is important to alter the boundaries
to probe how the system responds. Hence, much attention
has been paid to RB turbulence over rough surfaces. Another
motivation is the fact that the underlying surfaces of real-
world applications of thermal convection are always rough.
It is generally agreed that roughness enhances the absolute
value of Nu. However, it has been reported that the scaling
exponent increases with roughness [16–25] or remains
unchanged [26–28] as compared to the smooth counterpart,
depending on the range of Ra explored and the roughness
configurations. For example, Shen et al. [26] found that Nu
increased by 20%, whereas the exponent β did not change
upon using rough surfaces made of regularly spaced pyra-
mids. Roche et al. [18] obtained an increase of β to
approximately 0.51 by implementing V-shaped axis-
symmetrical grooves both on the sidewalls and horizontal
plates. Very recently, simulations of RB with rough walls
were done in the range Ra ¼ ½4 × 106; 3 × 109� and a
roughness induced effective 1=2 scaling was found in the
range Ra ¼ ½108; 3 × 109�. This was explained as the attain-
ment of the ultimate regime [24]. However, it is surprising
that the ultimate regime can be found at such low Ra since
theories predict that the ultimate regime 1=2 scaling can
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only be observed asymptotically when the BLs are highly
turbulent [9].
In this study, wewill unify these different views. For this,

we perform direct numerical simulations (DNS) of turbulent
RB convection over sinusoidally rough plates in two
dimensions (2D), adopting the same roughness configura-
tion as in Ref. [24]. The effects of roughness on heat
transport are presented by varying the heights h and wave-
lengths λ of the rough elements independently.We note that,
for the smooth case, 2D RB differs from three dimensional
(3D) RB in terms of (a) integral quantities for finite Pr
[29,30], (b) scaling arguments (the asymptotic exponent β is
1=2 in 3D [31,32], but 5=12 in 2D [33]), and (c) BL stability
[34]. However, for the rough case, 2D and 3D have the
same aysmptotic scaling exponent 1=2 [35]. Moreover, 2D
simulations are much less time consuming than 3D and can
help us push forward to Ra ≈ 1012 and Nu ∼Oð103Þ with
roughness. This key extension to large Ra unravels the
physical origin of the 1=2 regimes observed in Ref. [24].
The simulations were performed using a second-order

finite-difference code [36,37], in combination with an
immersed-boundary method [38] to track the rough ele-
ments. No-slip conditions were used for the velocity,
constant temperature boundary conditions for rough bot-
tom and top plates, and periodic boundary conditions for
the horizontal sidewalls. The control parameters are
Ra¼αgΔðL−hÞ3=ðνκÞ and the Prandtl number Pr¼ν=κ,
where α is the thermal expansion coefficient, g the gravi-
tational acceleration, Δ the temperature difference between
the two plates, L the height of the domain without rough-
ness, h the height of the roughness element, ν the kinematic
viscosity, and κ the thermal diffusivity. The reason to choose
L − h for the rough cases as the characteristic length is that
it resembles the height between the two smooth plates
where the same volume of fluid occupies. The other flow
quantities are nondimensionalized by the temperature differ-
ence Δ and the free fall velocity U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αgΔðL − hÞp

. In all
simulations, Pr ¼ 1 and the aspect ratio Γ ¼ D=L ¼ 2,
where D is the width of the domain. With this Γ, the heat
flux approximates the heat flux at an infinite aspect ratio
[39]. Three roughness heights were chosen, h=L ¼ 0.05,
0.1, and 0.15. For each height, the wavelength of roughness
λ=L was varied from 0.05 to 0.7. For each combination of
wavelength and height, we performed simulations in the
range of Ra ¼ ½108; 1012�. Adequate resolution was ensured
for all cases and the statistics were averaged over 200 free
fall time units. At Ra ¼ 7.3 × 1011 with λ ¼ h ¼ 0.1L,
14 336 × 7168 grid points were used. Nu is calculated from
Nu ¼ ffiffiffiffiffiffiffiffiffiffiffi

Ra Pr
p huzθiA − h∂zθiA, where uz denotes the verti-

cal velocity, θ the temperature, and h� � �iA the average over
time and any horizontal plane.
We begin by comparing the temperature field with

increasing Ra (see Fig. 1), for a fixed set of roughness
parameters (λ=L ¼ 0.1 and h=L ¼ 0.1). Here we stress
the plume morphology inside the cavity regions between

the rough elements. For the two smaller Ra ¼ 2.2 × 108

and Ra ¼ 2.2 × 109, thermal plumes are mainly generated
from the tips of the rough elements and are detached
towards the directions of the large scale rolls, while in the
cavity regions the flow is viscosity dominated. Note that
below Ra ¼ 2.2 × 108, roughness elements are submerged
inside the thermal boundary layer. In comparison, at
Ra ¼ 7.3 × 1011, plumes are not only generated at the tips
but also at the sloping surfaces of the rough elements.
Inside the cavities, the detached plumes mix the fluid
vigorously, making the flow there more turbulent. These
observations suggest that even after the rough elements
protrude beyond the thermal BL, the flow structure is
essentially similar for one decade of Ra while it changes
drastically when further increasing Ra so that the flow
inside the cavities becomes turbulent.
We now systematically explore the heat transport as a

function of Ra, covering more than four decades. The

FIG. 1. The instantaneous temperature fields for λ=L ¼ 0.10
and h=L ¼ 0.10 at (a) Ra ¼ 2.2 × 108, (b) Ra ¼ 2.2 × 109, and
(c) Ra ¼ 7.3 × 1011, where λ is the wavelength and h the height
of the roughness. The three plots share the same color map.
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resulting NuðRaÞ dependences with the same roughness
aspect ratio λ=h ≈ 1 for different roughness heights are
displayed in Fig. 2. The smooth case follows an effective
scaling exponent β ¼ 0.29, in very good agreement with
previous studies [30,40]. With the introduction of roughness,
two universal regimes can be identified.When the roughness
elements protrude the thermal BL, heat transport is enhanced
dramatically and the local effective scaling exponent is close
to 1=2, extending more than one decade, similar to the one
obtained previously [24]. We call this regime I, the enhanced
exponent regime. This scaling exponent is robust as it does
not change when altering the roughness height in the range
[0.05, 0.15]. The higher the roughness is, the earlier the
system steps into regime I. However, further increasing Ra
does not result in an extension of regime I. Instead, the scaling
exponent saturates back to the effectivevalueβ ≈ 0.33, which
is the typical Malkus exponent in the classical regime where
the BL is of laminar type [5–7]. We call this regime II, the
saturated exponent regime. Remarkably, the heat transport

follows exactly the same line in this regime for different
roughness height. The heat transfer increases 3.05 times
while the wet surface area augment is 2.30 times, suggesting
that the heat transfer enhancement is mainly due to the
enlarged surface area while strong plume ejections in the
cavities contribute the remaining part.
Next, we vary the roughness wavelength λ, focusing on

the effective scaling exponent β, up to Ra ≈ 1012. A similar
approach was employed in Refs. [24,41], and now we
extend to the two regimes and different heights of rough-
ness. No matter what λ is, we still identify the regime I
where the effective exponent increases and regime II where
it saturates back to a value close to 0.33. Figure 3(a)
demonstrates the scaling exponents in regime I. For each
roughness height, there is always an optimal λ which
maximizes the effective scaling exponent to 1=2.
However, for each h, the optimal λ is different. A better
parameter to describe the effects of roughness on the
scaling exponent is the roughness aspect ratio λ=h, as
shown in Figs. 3(b) and 3(c) for regime I and regime II,
respectively. Interestingly, all the data collapse into one
line and specifically for the optimum we find λ=h ≈ 1,
irrespective of the roughness height.
The various studies reported in the literature fall into

either of the two regimes we revealed here. Namely, the
regime where the effective scaling increases up to Ra1=2

[18,24] or the regimewhere the scaling is similar [26–28] to
the smooth case. These seemingly contradictory viewpoints
have caused some confusion in the interpretation of the data
on RB convection with roughness. The present study has
bridged the gap between the two views by studying a
sufficiently large regime in Ra and also various roughness
characteristics. The clear conclusion is that the observed
local effective 1=2 scaling in regime I should not be
interpreted as the attainment of the so-called ultimate
regime as suggested in previous studies [24], but rather
as a crossover regime in which the roughness elements
start to perturb the thermal BL. Only once the BLs become
turbulent does the transition to the ultimate regime really
occur [1,9] and the asymptotic 1=2 scaling might be seen.
This provides a consistent and plausible explanation for the

FIG. 2. Nu(Ra) for rough cases of aspect ratio λ=h ≈ 1 at h=L ¼
0.05, 0.10 and 0.15, in comparison to the smooth case, for which
the scaling exponent is β ¼ 0.29� 0.01. For the rough cases, two
regimes can be identified: regime I, β ¼ 0.50� 0.02 and regime II,
β ¼ 0.33� 0.01. The inset shows the compensated plot and the
plateau demonstrates the robustness of 1=2 scaling in regime I.
Clearly, a single power law cannot hold for thewhole extent of data.

FIG. 3. The Nu vs Ra effective scaling exponents β in regime I and regime II as a function of (a) roughness wavelength λ in regime I,
and (b),(c) aspect ratio λ=h in regime I and II, respectively. Note that both λ ¼ 0 and λ ¼ ∞ correspond to the smooth plate case
(dashed line).
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observed scatter in the reported values of β with the presence
of roughness in prior studies [16,17,19–23], where different
combinations of h and λwere chosen. We show that tuning h
and λ can lead to big variations of β, especially in regime I
(Fig. 3), presumably causing the scattered effective scaling
exponents. We note that the optimal λ=h ≈ 1 reported here is
different compared to previous studies, namely λ=h ≈ 5 in
Ref. [20] and λ=h ≈ 0.25 in Ref. [25]. However, we also note
that the roughness shapes and layouts are different among
these studies. Only by doing DNS in one-to-one compar-
isons with these experiments can we ultimately resolve the
origins of these differences.
To disentangle the mechanisms leading to the two

regimes, in Fig. 4 we show the temperature profiles as
well as the local flow structures inside the cavities for
λ=h ¼ 1.00 and h=L ¼ 0.10 at different Ra. We observe
secondary vortices induced by large scale rolls. In regime I,
the weak secondary vortices cannot efficiently mix the fluid
in the cavities and thus the flow there is still viscosity
dominated. Therefore, the temperature profile in the cavity
is rather linear. In regime II, secondary vortices are strong
enough to induce smaller vortices, which further induce
even smaller vortices down to the centers of the valleys,
forming a cascade of vortices. Because of the strong mixing
of this process, the roughness elements are covered by a
thin thermal BL which is uniformly distributed along the
rough surfaces, effectively mimicking an enlarged surface
area. As a result, the mean velocity profile is steep only at
the center of the valleys and otherwise becomes very
similar to the smooth case. The findings here also suggest
that for even larger Ra, the scaling exponent in the rough
case might finally become the same as in the smooth case.

Inside the cavities, in regime I, the viscosity dominated
flow decreases the BL contribution to the total thermal
energy dissipation, while in regime II, the restoration of the
uniformly distributed BL brings back the BL contribution
to the total thermal energy dissipation. For the thermal
energy dissipation, it has been well known that if the bulk
contribution is dominant, the scaling exponent is close to
1=2 and if the BL contribution dominates, the scaling
exponent is close to 1=3, i.e., in the classical regime where
the BL is of laminar type [6,7]. Here, due to the effective
scaling, regime I seems to be the bulk dominated regime
whereas regime II seems to be the classical BL-controlled
regime. This is counterintuitive since one would expect the
opposite with increasing Ra for the smooth RB, i.e. the
system becomes more bulk dominated with increasing Ra
[6,7,9]. In Fig. 5 we show the mean thermal energy
dissipation rate along the height. Indeed, in regime I, the
thermal dissipation inside the cavity is negligible, whereas
in regime II, the thermal dissipation inside the cavity is
dominated, supporting the above interpretation on the
reverse role of BL and bulk in the presence of roughness.
In conclusion, the present study has demonstrated that

the local effective β ¼ 1=2 scaling in RB with roughness
does not necessarily indicate the start of the ultimate regime
as claimed in previous studies [24]. Instead, its observation
is fortuitous because by tuning the height and wavelength
of roughness elements simultaneously, β can be tuned
between 0.29 and 0.5 locally. This regime I is just a
crossover regime where the bulk is dominated, as has been
speculated in Refs. [1,20,25]. Further increasing Ra brings
back the thin BL inside the cavities and restores the
classical BL-controlled regime, causing the scaling satu-
ration and recovering the classical RB scaling exponent.
Only at even higher Ra the real transition to the ultimate
scaling might be seen.
Finally, we note that for Taylor-Couette (TC) flow

with roughness which aligns with the azimuthal direction,

FIG. 4. The dimensionless mean temperature profiles ðθ − θtÞ=
Δ for λ=h ¼ 1.00 and h=L ¼ 0.10 at (a) the start of regime I
(Ra ¼ 2.2 × 108), (b) the end of regime I (Ra ¼ 2.2 × 109), and
(c) regime II (Ra ¼ 7.3 × 1011), where θt is the temperature of the
top plate. The insets show the temperature fields, superposed by
the velocity vectors in the cavity regions. In regime I, one roll is
inside the cavity, whereas in regime II, there are multiple. The two
black lines indicate where the tips of the roughness elements are.

FIG. 5. The dimensionless mean thermal energy dissipation
rate ϵθ=ðκΔ2L−2Þ across the height of the domain for λ=h ¼ 1.00,
h=L ¼ 0.10 at (a) the start of regime I (Ra ¼ 2.2 × 108),
(b) the end of regime I (Ra ¼ 2.2 × 109), and (c) regime II
(Ra ¼ 7.3 × 1011). The two black lines indicate where the tips of
the roughness elements are.
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DNS showed that for the angular velocity transfer scaling
Nuω ∼ Taβ, both regime I where β increases up to 1=2 and
regime II where β saturates back were also observed [42].
Here, Ta is the dimensionless angular velocity difference
which plays the equivalent role to Ra in RB. Thus, there is
strong evidence that the two systems are not only analogous
with each other in the smooth case [11,43–45] but also in
the rough case. However, for TC flow with roughness
which inhibits the azimuthal flow, this analogy might break
down. In that case, the main contribution to the angular
velocity transfer originates from the pressure forces rather
than the viscous forces. In contrast, in RB, the temperature
is a scalar and there is nothing similar to the effects of
pressure which could contribute to the heat transfer [46].
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