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We study experimentally and theoretically discrete solitons in crystalline structures consisting of several
tens of laser-cooled ions confined in a radio frequency trap. Resonantly exciting localized, spectrally
gapped vibrational modes of the soliton, a nonlinear mechanism leads to a nonequilibrium steady state of
the continuously cooled crystal. We find that the propagation and the escape of the soliton out of its quasi-
one-dimensional channel can be described as a thermal activation mechanism. We control the effective
temperature of the soliton’s collective coordinate by the amplitude of the external excitation. Furthermore,
the global trapping potential permits controlling the soliton dynamics and realizing directed transport
depending on its topological charge.
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Molecular scale transport is of considerable interest
[1–3]. Biological “molecular motors” are submicron
machines that consume nondirectional energy enabling
directed transport, typically restricted to a one-dimensional
(1D) “track.” At these scales a fundamental question
concerns the competition of the self-propelled motion with
stochastic forces. Similarly, membrane channels, nano-
pores, and nanotubes can be modeled as 1D or quasi-1D
systems with a cross section comparable to the size of the
transported ion or molecule. Here, the entire channel forms
the machine controlling the rate and direction of matter
transport between two regions against a gradient (e.g.,
electrochemical), acting in addition to the noise. A promi-
nent model for such dynamics is the Brownian ratchet, or
Brownian motor [4], where the basic assumptions are the
vanishing of all mean forces and the existence of significant
noise. To allow the emergence of nonvanishing (mean)
currents, the breaking of a symmetry is required—either
spatial or temporal, stochastic or spontaneous.
A natural generalization of the single-particle ratchet to a

many-body, nonlinear setting can be achieved with solitons,
nonperturbative solutions that manifest a collective parti-
clelike behavior [5,6] (Fig. 1). However, solitons are not
point particles and have some extension in space, in
addition to carrying internal degrees of freedom, e.g.,
oscillatory localized modes. These topologically protected
excitations permit the transport of mass, energy, charge,
spin, and other conserved quantities, in a broad range of
optical, atomic, soft matter, and solid-state systems [7–30].
For soliton ratchets, the internal modes play a crucial role in
the dynamics [31–38], since they can couple to external
excitations and, due to nonlinearities, induce a motion of
the soliton. In lattice systems, an effective pinning potential
for discrete solitons appears—the Peierls-Nabarro (PN)

potential. An ab initio theory of Brownian discrete soliton
ratchets is hence nontrivial and currently limited to 1D
systems with a continuum limit [39]. Experimentally
accessible are continuum soliton ratchets in Josephson
junction devices [40–44], while proposals exist for optical
[45], atomic [46], and solid-state systems [47].
In this Letter, we demonstrate experimental spectroscopy

of internal vibrational modes of a micrometer-scale discrete
soliton. Furthermore, we show that, in the presence of
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FIG. 1. Schematic depiction of discrete solitons and their
propagation in a trapped Coulomb crystal. (a) The self-assembled
crystal features reflection symmetry, and its energy minimum
comes in two degenerate configurations: the “zigzag” and its
mirror image “zigzag” (only one shown). (b) Realizing both
configurations in one crystal requires an interface, a domain wall
called a “kink” (left) or “kink” (right), which is a discrete soliton,
carrying a topological charge of �1, illustrated with a dashed red
line. (c) In this Letter, we ask whether a resonant global excitation
of radial vibrational kink modes can be rectified by the soliton
and exploited to conditionally propagate it to the right or left in a
noisy environment.
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damping and fluctuations, the discrete soliton can be
directed towards one end of its channel at a rate conditional
on its topological charge and controllable by global
external potentials. This is achieved by rectifying a har-
monic drive of high frequency that has a negligible effect in
the absence of the soliton. Therefore, the presented mecha-
nism could serve as a model for soliton-based transport of
mass, charge, or other conserved quantities.
Trapped ions are well suited for studying fundamental

concepts down to the quantum level, featuring unique
control in the preparation, manipulation, and detection of
electronic and motional degrees of freedom [48]. Isolated
in ultrahigh vacuum, they can be laser cooled to micro-
Kelvin temperatures and localized to the nanometer scale.
The effective potential for an ion near the center of a
radio frequency (rf) Paul trap is approximately harmonic
in 3D, with characteristic trapping frequencies ωfx;y;zg.
Considering multiple ions, the potential has to be supple-
mented by the mutual Coulomb interaction, and an ordered,
self-assembled crystal is formed that can be scaled to a
mesoscopic size of interest to investigate many-body
physics [49]. Figure 1 shows schematically how, for
appropriate trapping frequencies ωx ≪ ωy < ωz, the dou-
bly degenerate ground state of such a crystal takes a planar,
inhomogeneous zigzag configuration (we denote the mir-
rored configuration by zigzag). To realize both configura-
tions in one crystal, a localized interface, a domain wall
[e.g., the kink and kink shown in Fig. 1(b)], must form,
with a higher energy and the properties of a topological
soliton [50]. Such discrete solitons have been recently
characterized theoretically [51,52] and manipulated exper-
imentally [53–59] and are predicted in circular [50,60,61]
and helical configurations [62,63]. In particular, they are
proposed to permit quantum coherent manipulation of their
internal modes [58,61,64] using the rich toolbox of
quantum optics developed for trapped ions [65].
To describe the classical dynamics of discrete solitons,

we start by considering the 3N normal modes of N trapped
ions, assuming small oscillations around their equilibrium
positions. We consider one representative realization with
N ¼ 34 Mgþ atoms and experimentally determined trap
frequenciesωfx;y;zg¼2π×ðf38.2;232.3;293.0g�0.1ÞkHz.
For the zigzag and zigzag configuration, we find mode
frequencies ωzigzag

f1;…;102g in the range 2π × 38.2 to

2π × 328 kHz, while, with a kink or a kink, the additional
nonlinearity broadens the range of ωkink

f1;…;102g to 2π × 23.2

to 2π × 345 kHz [66]. A distinct set of internal modes can
be attributed to the kink and kink.
In the experiment, we probe the internal modes of the

discrete soliton, using a spectroscopic protocol consisting
of four steps: (i) inducing a phase transition [49] from a gas
of trapped ions to a Coulomb crystal by laser cooling,
(ii) in situ imaging of the crystal to reveal the potential
presence of the kink, (iii) excitation of the kink using a

weak periodic drive, and (iv) detecting the configuration,
analyzing the kink’s response to the excitation.
In step (i), a kink is formed and stabilized [54,58] with

near 0.5 probability. (ii) The crystallized ions scatter laser
photons that are collected in a charge-coupled device
(CCD) camera, resolving the ion-ion separation with
submicrometer accuracy, allowing us to differentiate the
crystal configurations. (iii) During an excitation of duration
td, we modulate the peak voltage (Urf ) on the trap’s
rf electrodes applying a voltage Ud sin ðωdtÞ calibrated
by the experimentally determined transfer function of the rf
circuit. Defining the relative excitation depth ϵ ¼ Ud=Urf ,
the force acting on each ion is derivable from the potential
Vd ∝ ϵ sin ðωdtÞ½y2 − z2�. The constant of proportionality
is set by the experimental setup, whereas ϵ remains fully
controllable. The excitation acts uniformly on the ions’
radial coordinates y and z, while they remain continuously
Doppler cooled by an axial beam.
We run this sequence at least 100 times for each data

point. Figure 2(a) shows two main resonances where the
kink [Fig. 2(b)(I)] escapes from the crystal, when scanning
ωd up to the highest mode frequencies for td ¼ 85 ms.
These two resonances are close (within their width) to the
frequencies of two internal modes of the kink, ωkink

97 and
ωkink
100 , derived for ϵ → 0. The reduced peak amplitude for

ωkink
97 results from a smaller projection of its eigenvector

components for each ion on the radial direction. To shed
light on the mechanism leading to the disappearance of the
kink at resonance, we image the kink during the driving
time td. With small ϵ and ωd chosen at a resonance, we find
an axially blurred trace [Fig. 2(b)(II)]. We identify this as an
induced excitation of the lowest-frequency kink mode,
ωkink
1 , a localized shear mode of the two opposing ion

chains oscillating out of phase and axially translating the
soliton. Increasing ϵ leads to the dynamics imaged in
Fig. 2(b)(III), demonstrating that due to the radial drive the
kink reaches the axial edge of the crystal and escapes, while
the crystal remains intact.
Molecular dynamics (MD) simulations allow further

insight. In the limit of vanishing damping and kinetic
energy, the individual localized mode resonant with ωd
is excited, and, on a slower time scale comparable with
1=ωkink

1 ≈ 50 μs, the energy leaks via nonlinear coupling to
the rest of the modes. As the kink oscillations increase and
extend over a few lattice sites, we must consider the laser
cooling. Here, the dynamics of a single ion at the Doppler-
cooling limit along the x axis can be modeled as a
Brownian harmonic oscillator [68–71]. The damping coef-
ficient γx and diffusion coefficientDx are determined by the
experimental parameters and obey a fluctuation-dissipation
relation Dx ¼ γxkBTx=m. The temperature Tx is of the
order of the Doppler-cooling limit TD ≈ 1 mK and
γx=m ≈ 2π × 0.3 kHz. Similar equations hold for the radial
coordinates, with γy, γz ≪ γx. Adding these Langevin
dynamics to the MD simulations including the trap and
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Coulomb interactions [58] and drive Vd defined above
reveals that a nonequilibrium steady state is reached on a
millisecond time scale. The characterization of this state
is nontrivial [72]; however, the mixing of spatial directions
by the quasi-2D crystal modes leads to an effective radial
damping. The energy drawn from the radial drive by the
kink’s internal mode is transformed to heat in the crystal,
balanced by axial laser cooling, and a mean kinetic energy
in the crystal at the steady state, Ek, can be defined and is
linearly related to ϵ. Using the measured experiment
parameters, the shapes and positions of the resonances
in Fig. 2 are reproduced quantitatively [72].
Next, we experimentally determine the survival proba-

bility of the kink as function of td, for different values of ϵ,
with ωd resonant at ωkink

100 . The survival probabilities

[Fig. 3(a)] can be fitted by an exponential decay yielding
a mean lifetime τðϵÞ that decreases with ϵ [Fig. 3(b)] [73].
This evidences a thermal activation mechanism for the
kink’s escape across a barrier. As it is known from
numerical simulations that the PN potential in a trap
becomes effectively harmonic [54], the value of the PN
potential at the edges of the crystal defines the height of the
barrierW. To model the dynamics of the escape, we use the
numerically obtained positions of all ions to define an
instantaneous collective kink coordinate [74], for the kink’s
axial position along the quasi-2D crystal featuring its 1D
track. Following its time evolution, we find using the
velocity autocorrelation function that it is overdamped. We
fit the effective kink coordinate’s friction coefficient gðEkÞ,
which depends on the mean kinetic energy stored in the
crystal in the relevant temperature regime [72] originating
from phonon scattering, finding gðEkÞ ∝ E1=2

k . Then,
assuming that the effective kink coordinate is subject to
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FIG. 2. Spectroscopy and directed escape of a discrete soliton.
(a) Spectroscopically resolving kink modes via its complete escape
from the crystal. With a periodic excitation of amplitude ϵ ¼
1.45 × 10−3 (blue squares), we resolve a resonance at ωd ¼ 2π ×
ð325.3� 0.2Þ kHz with a width of 2π × ð4.8� 0.5Þ kHz. Strong
excitation ϵ ¼ 1.74 × 10−3 (red disks) leads to saturation and an
additional weaker resonance at ωd ¼ 2π × ð311� 0.5Þ kHz of
width 2π × ð4.4� 1.8Þ kHz, in agreement with the numerically
derived frequencies of internal modes (see the text for details).
Error bars represent binomial statistics, and the offset level of 0.1
originates from background gas collisions at ϵ ¼ 0, leading to
melting and recrystallization (background lifetime ≈3.2 s).
(b) CCD images of the fluorescence of 34 ions confined in a
Paul trap. (I) The center features the kink. (II) The modulation
of the radial confinement resonantly excites a localized high-
frequency vibrational kink mode, and its nonlinear coupling to
other modes results in the axial blurring of the oscillating kink. (III)
Escape of the soliton via the right-hand side is witnessed as the left
half of the configuration remains unaffected, while on the right the
two opposing ion chains have to “slide” atop each other. Because
of the long exposure time of the camera, tCCD ¼ 150 ms, both
configurations are superimposed.

(a)

(b)

FIG. 3. Resonant drive of the radial kink mode leads to
a thermally activated escape out of the PN potential. (a) Exper-
imental survival probability of the soliton as a function of td
forωd=ð2πÞ ¼ 327 kHz and ϵ ¼ 10−3 × f1.15ðgreen trianglesÞ;
1.30 ðblack inverted trianglesÞ; 1.45 ðblue squaresÞ; and 1.74
ðred disksÞg. Solid lines represent exponential fits yielding the
corresponding lifetimes of the kink, τðϵÞ ¼ fð544� 35Þ;
ð248� 16Þ; ð71� 5Þ; ð23� 2Þg ms, respectively. Error bars re-
present the 1σ confidence interval. The residual kink loss rate for
ϵ ¼ 0 is subtracted based on a calibration measurements. (b) Life-
time of the kink in dependence on ϵ derived from panel (a), fitted
with an overdamped Kramers’ model [81] for symmetric confine-
ment (see the text for details), indicated by the gray solid line. The
experiment control parameter ϵ is numerically found to be linearly
related to the mean kinetic energy of the ions, leading to an effective
temperature. The gray shaded region represents 1σ uncertainty of
the fit. We extract a related barrier height of ð26.5� 1.0ÞkBTD.
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thermal noise at an effective temperature [77] defined by
kBT=2 ¼ Ek=ð3NÞ, we apply Kramers’ model in the over-
damped limit [81,82] to describe the motion of the soliton
[83,84]. The predicted mean lifetime of the Brownian
particle obeys τ ∝ gðTÞeW=ðkBTÞ. The details of the PN
potential are contained in the omitted proportionality
constant, with only the barrier height W entering, averaged
over the kink and kink and both directions. Based on the
experimentally determined τðϵÞ [Fig. 3(b)], we find the
value W ¼ ð26.5� 1.0ÞkBTD.
Finally, we experimentally find a substantial direction-

ality of the soliton transport dependent on its topological
charge. We define the transport directionality (TD) as the
normalized difference of probabilities to escape to the right
and to the left. The TD of the kink remains near 0 for all ϵ
[Fig. 4(a)], while for the kink we find a substantial bias to
the right. The existence of a mean current implies a broken
symmetry, and we extend the harmonic approximation of
the trap potential by nonlinear terms [85] of third order
along the x axis (Lx) and y axis (Ly) and also fourth order
and mixed terms. We use the charge density (sensitive to
these terms) as a sensor, by minimizing the weighted least-
mean-square shift of the imaged ion positions and the
measured frequencies ωx and ωy, from their numerically
obtained values as a function of the nonlinear coefficients.
In particular, we find Lx > 0, leading to a shift of the crystal
towards x < 0, increasing the left-side PN barrier and
decreasing it on the right. Similarly, Ly < 0 shifts the
crystal to y > 0 and, due to the different radial densities of
the kink and kink, results in different PN barriers. The mean
PN barrier numerically obtained is W ¼ 25.3kBTD,
coinciding within error bars with the experimental value.
An intricate interplay of the various global nonlinearity

parameters explains the directionality measured in Fig. 4
[72], and we obtain an asymmetric shift of about 2kBTD for
W on the left and on the right. This differential shift is
comparable to the increase of T with ϵ, reducing the
soliton’s sensitivity to the differences in W, as evidenced
in Fig. 4. Thus, the directionality can be controlled via the
nonlinear terms of the global trapping potential and Ud.
In conclusion, we find that the external radial drive can

be tuned to pump energy through a kink mode, that is
converted to heat, establishing power transfer in a non-
equilibrium steady state. The nonlinearity of the trap
potential affects the ions only perturbatively, and all mean
forces vanish after the self-assembled crystal adjusts its
configuration. The axial motion of the soliton can be
described by integrating out all degrees of freedom leaving
one effective coordinate, to which Kramers’ model can be
applied with an effective temperature. The directionality
arises through the different W, conditioned on the topo-
logical charge, which is the manifestation of the underlying
nonequilibrium conditions, and only the solitons can be
transported. Typically, realizing a ratchet mechanism
requires asymmetric gradients at the single-particle scale.
We show how a large scale potential permits the robust
control of the soliton transport, its direction, and rate.
These physical processes connect to a broad range of

recently studied topics, nonequilibrium states [86–88],
ratchets in granular chains [89], quantum ratchets [90,91],
and ratchets with power law interaction [92], and studies
with trapped ions on thermal activation [93], escape dynam-
ics [94], and heat current formation [95–98]. The unique
controllability of trapped ions further permits investigations
of transport dynamics, e.g., concatenating crystals along a
linear axis or studying ring configurations [50,61,99,100].
Ground state cooling of these internal modes has been
proposed to enable accessing the quantum regime where the
related phonons permit investigating coherent coupling and
transport in mesoscopic, quasi-2D crystals [50,61]. Trapping
of several discrete solitons has been realized [58,59] and a
kink mode excitation demonstrated via intensity modulation
of a single-ion focused laser beam [72], enabling the study of
phonon-mediated energy transport in kink lattices.
Related work on local kink mode spectroscopy was

performed in the context of friction and Aubry transi-
tions [101].

H. L. thanks Martin Lenz, AnanyoMaitra, and Guglielmo
Saggiorato for very fruitful discussions. H. L. acknowledges
support by a Marie Curie Intra European Fellowship within
the 7th European Community Framework Programme.

*tobias.schaetz@physik.uni-freiburg.de
†haggaila@gmail.com

[1] F. Jülicher, A. Ajdari, and J. Prost, Modeling molecular
motors, Rev. Mod. Phys. 69, 1269 (1997).

(a)

(b)

FIG. 4. Experimental transport directionality (TD) conditional
on the topological charge: �1¼̂fkink; kinkg. (a) While the kink
escapes with close to zero TD in the experiment, the kink reveals
the broken symmetry tunable by nonlinear terms of the confining
potential. Additionally, the TD depends on ϵ (symbols as in
Fig. 3). Error bars give 1σ standard deviation. (b) The trapping
potential for the soliton (schematically depicted) depends on its
topological charge. It remains approximately left-right symmetric
for the kink and is strongly asymmetric for the kink. The trap
depth for the whole Coulomb crystal amounts to 104 × Vkink.

PRL 119, 153602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

153602-4

https://doi.org/10.1103/RevModPhys.69.1269


[2] P. Hänggi and F. Marchesoni, Artificial Brownian motors:
Controlling transport on the nanoscale, Rev. Mod. Phys.
81, 387 (2009).

[3] R. Dean Astumian, S. Mukherjee, and A. Warshel, The
physics and physical chemistry of molecular machines,
ChemPhysChem 17, 1719 (2016).

[4] S. Denisov, S. Flach, and P. Hänggi, Tunable transport with
broken space-time symmetries, Phys. Rep. 538, 77 (2014).

[5] R. Rajaraman, Solitons and Instantons: An Introduction to
Solitons and Instantons in Quantum Field Theory (North-
Holland Personal Library, North-Holland, Amsterdam,
1987).

[6] T. Dauxois and M. Peyrard, Physics of Solitons
(Cambridge University Press, Cambridge, England, 2006).

[7] O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova
Model: Concepts, Methods, and Applications, Texts and
Monographs in Physics (Springer, New York, 2004).

[8] S. Flach and A. V. Gorbach, Discrete breathers—Advances
in theory and applications, Phys. Rep. 467, 1 (2008).

[9] M. Öster, M. Johansson, and A. Eriksson, Enhanced
mobility of strongly localized modes in waveguide arrays
by inversion of stability, Phys. Rev. E 67, 056606 (2003).

[10] L. čo Hadžievski, A. Maluckov, M. Stepić, and D. Kip,
Power Controlled Soliton Stability and Steering in Lattices
with Saturable Nonlinearity, Phys. Rev. Lett. 93, 033901
(2004).

[11] T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and
J. Cuevas, Radiationless Traveling Waves in Saturable
Nonlinear Schrödinger Lattices, Phys. Rev. Lett. 97,
124101 (2006).

[12] R. A. Vicencio and M. Johansson, Discrete soliton
mobility in two-dimensional waveguide arrays with
saturable nonlinearity, Phys. Rev. E 73, 046602 (2006).

[13] O. F. Oxtoby and I. V. Barashenkov, Moving solitons in the
discrete nonlinear Schrödinger equation, Phys. Rev. E 76,
036603 (2007).

[14] H. Susanto, P. G. Kevrekidis, R. Carretero-González, B. A.
Malomed, and D. J. Frantzeskakis, Mobility of Discrete
Solitons in Quadratically Nonlinear Media, Phys. Rev.
Lett. 99, 214103 (2007).

[15] U. Naether, R. A. Vicencio, and M. Johansson, Peierls-
Nabarro energy surfaces and directional mobility of dis-
crete solitons in two-dimensional saturable nonlinear
Schrödinger lattices, Phys. Rev. E 83, 036601 (2011).

[16] V. Ahufinger, A. Sanpera, P. Pedri, L. Santos, and M.
Lewenstein, Creation and mobility of discrete solitons in
Bose-Einstein condensates, Phys. Rev. A 69, 053604
(2004).

[17] B. A Malomed, Soliton Management in Periodic Systems
(Springer, New York, 2006).

[18] J. Abdullaev, D. Poletti, E. A. Ostrovskaya, and Y. S.
Kivshar, Controlled Transport of Matter Waves in Two-
Dimensional Optical Lattices, Phys. Rev. Lett. 105,
090401 (2010).

[19] T. Fogarty, C. Cormick, H. Landa, V. M. Stojanović, E.
Demler, and G. Morigi, Nanofriction in Cavity Quantum
Electrodynamics, Phys. Rev. Lett. 115, 233602 (2015).

[20] T. Fogarty, H. Landa, C. Cormick, and G. Morigi,
Optomechanical many-body cooling to the ground state
using frustration, Phys. Rev. A 94, 023844 (2016).

[21] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann,
and Z. Dogic, Spontaneous motion in hierarchically
assembled active matter, Nature (London) 491, 431 (2012).

[22] A. Ward, F. Hilitski, W. Schwenger, D. Welch, A. W. C.
Lau, V. Vitelli, L. Mahadevan, and Z. Dogic, Solid friction
between soft filaments, Nat. Mater. 14, 583 (2015).

[23] T. Bohlein, J. Mikhael, and C. Bechinger, Observation of
kinks and antikinks in colloidal monolayers driven across
ordered surfaces, Nat. Mater. 11, 126 (2012).

[24] A. Bylinskii, D. Gangloff, I. Counts, and V. Vuletić,
Observation of Aubry-type transition in finite atom chains
via friction, Nat. Mater. 15, 717 (2016).

[25] M. V. Fistul, A. Wallraff, Yu. Koval, A. Lukashenko, B. A.
Malomed, and A. V. Ustinov, Quantum Dissociation of a
Vortex-Antivortex Pair in a Long Josephson Junction,
Phys. Rev. Lett. 91, 257004 (2003).

[26] D. Bedau, M. Kläui, S. Krzyk, U. Rüdiger, G. Faini, and
L. Vila, Detection of Current-Induced Resonance of
Geometrically Confined Domain Walls, Phys. Rev. Lett.
99, 146601 (2007).

[27] T.-H. Kim and H.W. Yeom, Topological Solitons versus
Nonsolitonic Phase Defects in a Quasi-One-Dimensional
Charge-Density Wave, Phys. Rev. Lett. 109, 246802 (2012).

[28] S. Brazovskii, C. Brun, Z.-Z. Wang, and P. Monceau,
Scanning-Tunneling Microscope Imaging of Single-
Electron Solitons in a Material with Incommensurate
Charge-Density Waves, Phys. Rev. Lett. 108, 096801
(2012).

[29] S. Roth and D. Carroll, One-Dimensional Metals: Con-
jugated Polymers, Organic Crystals, Carbon Nanotubes,
2nd ed. (Wiley-VCH, Weinheim, 2015), pp. 85–112,
ISBN: 978-3-527-33557-2.

[30] P. Karpov and S. Brazovskii, Phase transitions in ensem-
bles of solitons induced by an optical pumping or a strong
electric field, Phys. Rev. B 94, 125108 (2016).

[31] N. R. Quintero, A. Sánchez, and F. G. Mertens, Anomalous
Resonance Phenomena of Solitary Waves with Internal
Modes, Phys. Rev. Lett. 84, 871 (2000).

[32] N. R. Quintero, A. Sánchez, and F. G. Mertens, Anomalies
of ac driven solitary waves with internal modes: Non-
parametric resonances induced by parametric forces, Phys.
Rev. E 64, 046601 (2001).

[33] M. Salerno and N. R. Quintero, Soliton ratchets, Phys. Rev.
E 65, 025602 (2002).

[34] S. Flach, Y. Zolotaryuk, A. E. Miroshnichenko, and M. V.
Fistul, Broken Symmetries and Directed Collective Energy
Transport in Spatially Extended Systems, Phys. Rev. Lett.
88, 184101 (2002).

[35] L. Morales-Molina, N. R. Quintero, F. G. Mertens, and A.
Sánchez, Internal Mode Mechanism for Collective Energy
Transport in Extended Systems, Phys. Rev. Lett. 91,
234102 (2003).

[36] C. R. Willis and M. Farzaneh, Soliton ratchets induced by
excitationof internalmodes, Phys.Rev. E 69, 056612 (2004).

[37] P. J. Martínez and R. Chacón, Disorder Induced Control of
Discrete Soliton Ratchets, Phys. Rev. Lett. 100, 144101
(2008).

[38] J. Cuevas, B. Sánchez-Rey, and M. Salerno, Regular
and chaotic transport of discrete solitons in asymmetric
potentials, Phys. Rev. E 82, 016604 (2010).

PRL 119, 153602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

153602-5

https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1002/cphc.201600184
https://doi.org/10.1016/j.physrep.2014.01.003
https://doi.org/10.1016/j.physrep.2008.05.002
https://doi.org/10.1103/PhysRevE.67.056606
https://doi.org/10.1103/PhysRevLett.93.033901
https://doi.org/10.1103/PhysRevLett.93.033901
https://doi.org/10.1103/PhysRevLett.97.124101
https://doi.org/10.1103/PhysRevLett.97.124101
https://doi.org/10.1103/PhysRevE.73.046602
https://doi.org/10.1103/PhysRevE.76.036603
https://doi.org/10.1103/PhysRevE.76.036603
https://doi.org/10.1103/PhysRevLett.99.214103
https://doi.org/10.1103/PhysRevLett.99.214103
https://doi.org/10.1103/PhysRevE.83.036601
https://doi.org/10.1103/PhysRevA.69.053604
https://doi.org/10.1103/PhysRevA.69.053604
https://doi.org/10.1103/PhysRevLett.105.090401
https://doi.org/10.1103/PhysRevLett.105.090401
https://doi.org/10.1103/PhysRevLett.115.233602
https://doi.org/10.1103/PhysRevA.94.023844
https://doi.org/10.1038/nature11591
https://doi.org/10.1038/nmat4222
https://doi.org/10.1038/nmat3204
https://doi.org/10.1038/nmat4601
https://doi.org/10.1103/PhysRevLett.91.257004
https://doi.org/10.1103/PhysRevLett.99.146601
https://doi.org/10.1103/PhysRevLett.99.146601
https://doi.org/10.1103/PhysRevLett.109.246802
https://doi.org/10.1103/PhysRevLett.108.096801
https://doi.org/10.1103/PhysRevLett.108.096801
https://doi.org/10.1103/PhysRevB.94.125108
https://doi.org/10.1103/PhysRevLett.84.871
https://doi.org/10.1103/PhysRevE.64.046601
https://doi.org/10.1103/PhysRevE.64.046601
https://doi.org/10.1103/PhysRevE.65.025602
https://doi.org/10.1103/PhysRevE.65.025602
https://doi.org/10.1103/PhysRevLett.88.184101
https://doi.org/10.1103/PhysRevLett.88.184101
https://doi.org/10.1103/PhysRevLett.91.234102
https://doi.org/10.1103/PhysRevLett.91.234102
https://doi.org/10.1103/PhysRevE.69.056612
https://doi.org/10.1103/PhysRevLett.100.144101
https://doi.org/10.1103/PhysRevLett.100.144101
https://doi.org/10.1103/PhysRevE.82.016604


[39] B. Sánchez-Rey, N. R. Quintero, J. Cuevas-Maraver, and
M. A. Alejo, Collective coordinates theory for discrete
soliton ratchets in the sine-Gordon model, Phys. Rev. E 90,
042922 (2014).

[40] E. Trías, J. J. Mazo, F. Falo, and T. P. Orlando, Depinning
of kinks in a Josephson-junction ratchet array, Phys. Rev. E
61, 2257 (2000).

[41] G. Carapella and G. Costabile, Ratchet Effect: Demon-
stration of a Relativistic Fluxon Diode, Phys. Rev. Lett. 87,
077002 (2001).

[42] A. V. Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, and
M. Salerno, Ratchetlike Dynamics of Fluxons in Annular
Josephson Junctions Driven by Biharmonic Microwave
Fields, Phys. Rev. Lett. 93, 087001 (2004).

[43] D. E. Shalóm and H. Pastoriza, Vortex Motion Rectifica-
tion in Josephson Junction Arrays with a Ratchet Potential,
Phys. Rev. Lett. 94, 177001 (2005).

[44] M. Beck, E. Goldobin, M. Neuhaus, M. Siegel, R. Kleiner,
and D. Koelle, High-Efficiency Deterministic Josephson
Vortex Ratchet, Phys. Rev. Lett. 95, 090603 (2005).

[45] A. V. Gorbach, S. Denisov, and S. Flach, Optical ratchets
with discrete cavity solitons, Opt. Lett. 31, 1702 (2006).

[46] D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B. Li, and
Y. S. Kivshar, Dynamics of Matter-Wave Solitons in a
Ratchet Potential, Phys. Rev. Lett. 101, 150403 (2008).

[47] Y. Zolotaryuk and M.M. Osmanov, Directed motion of
domain walls in biaxial ferromagnets under the influence
of periodic external magnetic fields, Eur. Phys. J. B 79, 257
(2011).

[48] D. J. Wineland and W.M. Itano, Laser cooling of atoms,
Phys. Rev. A 20, 1521 (1979).

[49] R. Blümel, J. M. Chen, E. Peik, W. Quint, W. Schleich,
Y. R. Shen, and H. Walther, Phase transitions of stored
laser-cooled ions, Nature (London) 334, 309 (1988).

[50] H. Landa, S. Marcovitch, A. Retzker, M. B. Plenio, and B.
Reznik, Quantum Coherence of Discrete Kink Solitons in
Ion Traps, Phys. Rev. Lett. 104, 043004 (2010).

[51] A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio, and
A. Retzker, Structural Defects in Ion Chains by Quenching
the External Potential: The Inhomogeneous Kibble-Zurek
Mechanism, Phys. Rev. Lett. 105, 075701 (2010).

[52] G. De Chiara, A. del Campo, G. Morigi, M. B. Plenio, and
A. Retzker, Spontaneous nucleation of structural defects
in inhomogeneous ion chains, New J. Phys. 12, 115003
(2010).

[53] Ch. Schneider, D. Porras, and T. Schaetz, Experimental
quantum simulations of many-body physics with trapped
ions, Rep. Prog. Phys. 75, 024401 (2012).

[54] M. Mielenz, H. Landa, J. Brox, S. Kahra, G. Leschhorn,
M. Albert, B. Reznik, and T. Schaetz, Trapping of
Topological-Structural Defects in Coulomb Crystals, Phys.
Rev. Lett. 110, 133004 (2013).

[55] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T.
Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker,
M. B. Plenio, W. H. Zurek, A. del Campo, and T. E.
Mehlstubler, Topological defect formation and spontane-
ous symmetry breaking in ion Coulomb crystals, Nat.
Commun. 4, 2291 (2013).

[56] S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S. T.
Dawkins, U. G. Poschinger, R. Nigmatullin, A. Retzker,

M. B. Plenio, F. Schmidt-Kaler, and K. Singer, Observa-
tion of the Kibble-Zurek scaling law for defect formation
in ion crystals, Nat. Commun. 4, 8 (2013).

[57] S. Ejtemaee and P. C. Haljan, Spontaneous nucleation and
dynamics of kink defects in zigzag arrays of trapped ions,
Phys. Rev. A 87, 051401 (2013).

[58] H. Landa, B. Reznik, J. Brox, M. Mielenz, and T. Schaetz,
Structure, dynamics and bifurcations of discrete solitons in
trapped ion crystals, New J. Phys. 15, 093003 (2013).

[59] H. L. Partner, R. Nigmatullin, T. Burgermeister, K. Pyka,
J. Keller, A. Retzker, M. B. Plenio, and T. E. Mehlstubler,
Dynamics of topological defects in ion Coulomb crystals,
New J. Phys. 15, 103013 (2013).

[60] F. Cartarius, C. Cormick, and G. Morigi, Stability and
dynamics of ion rings in linear multipole traps, Phys. Rev.
A 87, 013425 (2013).

[61] H. Landa, A. Retzker, T. Schaetz, and B. Reznik, Entan-
glement Generation Using Discrete Solitons in Coulomb
Crystals, Phys. Rev. Lett. 113, 053001 (2014).

[62] R. Nigmatullin, A. del Campo, G. De Chiara, G. Morigi,
M. B. Plenio, and A. Retzker, Formation of helical ion
chains, Phys. Rev. B 93, 014106 (2016).

[63] A. V. Zampetaki, J. Stockhofe, and P. Schmelcher,
Dynamics of nonlinear excitations of helically confined
charges, Phys. Rev. E 92, 042905 (2015).

[64] S. Marcovitch and B. Reznik, Entanglement of solitons in
the Frenkel-Kontorova model, Phys. Rev. A 78, 052303
(2008).

[65] D. J. Wineland, Superposition, entanglement, and raising
Schrödinger’s cat (Nobel Lecture), Angew. Chem. Int. Ed.
52, 10179 (2013).

[66] We have verified that the dynamic nature of the Paul trap
[67] leads in our setup to only small frequency shifts.

[67] H. Landa, M. Drewsen, B. Reznik, and A. Retzker, Modes
of oscillation in radiofrequency Paul traps, New J. Phys.
14, 093023 (2012).

[68] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland,
Quantum dynamics of single trapped ions, Rev. Mod.
Phys. 75, 281 (2003).

[69] M. Marciante, C. Champenois, A. Calisti, J. Pedregosa-
Gutierrez, and M. Knoop, Ion dynamics in a linear radio-
frequency trap with a single cooling laser, Phys. Rev. A 82,
033406 (2010).

[70] J. Javanainen, Light-pressure cooling of trapped ions in
three dimensions, Appl. Phys. 23, 175 (1980).

[71] J. Javanainen and S. Stenholm, Laser cooling of trapped
particles I: The heavy particle limit, Appl. Phys. 21, 283
(1980).

[72] J. Brox, P. Kiefer, M. Bujak, T. Schaetz, and H. Landa
(to be published).

[73] H. L. Partner, R. Nigmatullin, T. Burgermeister, J. Keller,
K. Pyka, M. B. Plenio, A. Retzker, W. H. Zurek, A. del
Campo, and T. E. Mehlstubler, Structural phase transitions
and topological defects in ion Coulomb crystals, Physica B
(Amsterdam) 460, 114 (2015), Special Issue on Electronic
Crystals.

[74] Collective coordinates of solitons are well described in
Refs. [75,76]; we use the ansatz (A.3) of Ref. [59].

[75] R. Boesch, P. Stancioff, and C. R. Willis, Hamiltonian
equations for multiple-collective-variable theories of

PRL 119, 153602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

153602-6

https://doi.org/10.1103/PhysRevE.90.042922
https://doi.org/10.1103/PhysRevE.90.042922
https://doi.org/10.1103/PhysRevE.61.2257
https://doi.org/10.1103/PhysRevE.61.2257
https://doi.org/10.1103/PhysRevLett.87.077002
https://doi.org/10.1103/PhysRevLett.87.077002
https://doi.org/10.1103/PhysRevLett.93.087001
https://doi.org/10.1103/PhysRevLett.94.177001
https://doi.org/10.1103/PhysRevLett.95.090603
https://doi.org/10.1364/OL.31.001702
https://doi.org/10.1103/PhysRevLett.101.150403
https://doi.org/10.1140/epjb/e2010-10534-9
https://doi.org/10.1140/epjb/e2010-10534-9
https://doi.org/10.1103/PhysRevA.20.1521
https://doi.org/10.1038/334309a0
https://doi.org/10.1103/PhysRevLett.104.043004
https://doi.org/10.1103/PhysRevLett.105.075701
https://doi.org/10.1088/1367-2630/12/11/115003
https://doi.org/10.1088/1367-2630/12/11/115003
https://doi.org/10.1088/0034-4885/75/2/024401
https://doi.org/10.1103/PhysRevLett.110.133004
https://doi.org/10.1103/PhysRevLett.110.133004
https://doi.org/10.1038/ncomms3291
https://doi.org/10.1038/ncomms3291
https://doi.org/10.1038/ncomms3290
https://doi.org/10.1103/PhysRevA.87.051401
https://doi.org/10.1088/1367-2630/15/9/093003
https://doi.org/10.1088/1367-2630/15/10/103013
https://doi.org/10.1103/PhysRevA.87.013425
https://doi.org/10.1103/PhysRevA.87.013425
https://doi.org/10.1103/PhysRevLett.113.053001
https://doi.org/10.1103/PhysRevB.93.014106
https://doi.org/10.1103/PhysRevE.92.042905
https://doi.org/10.1103/PhysRevA.78.052303
https://doi.org/10.1103/PhysRevA.78.052303
https://doi.org/10.1002/anie.201303404
https://doi.org/10.1002/anie.201303404
https://doi.org/10.1088/1367-2630/14/9/093023
https://doi.org/10.1088/1367-2630/14/9/093023
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevA.82.033406
https://doi.org/10.1103/PhysRevA.82.033406
https://doi.org/10.1007/BF00899714
https://doi.org/10.1007/BF00886180
https://doi.org/10.1007/BF00886180
https://doi.org/10.1016/j.physb.2014.11.051
https://doi.org/10.1016/j.physb.2014.11.051


nonlinear Klein-Gordon equations: A projection-operator
approach, Phys. Rev. B 38, 6713 (1988).

[76] A. H. Castro Neto and A. O. Caldeira, Transport properties
of solitons, Phys. Rev. E 48, 4037 (1993).

[77] More elaborate models [78–80] could be considered in a
second step.

[78] P. S. Burada and B. Lindner, Escape rate of an active
Brownian particle over a potential barrier, Phys. Rev. E 85,
032102 (2012).

[79] J. Schuecker, M. Diesmann, and M. Helias, Modulated
escape from a metastable state driven by colored noise,
Phys. Rev. E 92, 052119 (2015).

[80] A. Geiseler, P. Hänggi, and G. Schmid, Kramers escape of
a self-propelled particle, Eur. Phys. J. B 89, 175 (2016).

[81] H. A. Kramers, Brownian motion in a field of force and the
diffusion model of chemical reactions, Physica (Utrecht) 7,
284 (1940).

[82] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate
theory: Fifty years after Kramers, Rev. Mod. Phys. 62, 251
(1990).

[83] P. Grigolini, H.-L. Wu, and V. M. Kenkre, Brownian
motion and finite-temperature effects in the discrete
nonlinear Schrödinger equation: Analytic results for the
nonadiabatic dimer, Phys. Rev. B 40, 7045 (1989).

[84] P. S. Lomdahl and W. C. Kerr, Do Davydov Solitons Exist
at 300 K?, Phys. Rev. Lett. 55, 1235 (1985).

[85] N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A.
Keselman, and R. Ozeri, Single-ion nonlinear mechanical
oscillator, Phys. Rev. A 82, 061402 (2010).

[86] E. Dieterich, J. Camunas-Soler, M. Ribezzi-Crivellari,
U. Seifert, and F. Ritort, Single-molecule measurement
of the effective temperature in non-equilibrium steady
states, Nat. Phys. 11, 971 (2015).

[87] A. Y. Grosberg and J.-F. Joanny, Nonequilibrium statistical
mechanics of mixtures of particles in contact with different
thermostats, Phys. Rev. E 92, 032118 (2015).

[88] É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco,
and F. van Wijland, How Far from Equilibrium Is Active
Matter?, Phys. Rev. Lett. 117, 038103 (2016).

[89] V. Berardi, J. Lydon, P. G. Kevrekidis, C. Daraio, and R.
Carretero-González, Directed ratchet transport in granular
chains, Phys. Rev. E 88, 052202 (2013).

[90] L. Ermann and G. G. Carlo, Quantum parameter space of
dissipative directed transport, Phys. Rev. E 91, 010903
(2015).

[91] C. Grossert, M. Leder, S. Denisov, P. Hänggi, and M.
Weitz, Experimental control of transport resonances in a
coherent quantum rocking ratchet, Nat. Commun. 7, 10440
(2016).

[92] B. Liebchen and P. Schmelcher, Interaction induced
directed transport in ac-driven periodic potentials, New
J. Phys. 17, 083011 (2015).

[93] J. Liang and P. C. Haljan, Hopping of an impurity defect
in ion crystals in linear traps, Phys. Rev. A 83, 063401
(2011).

[94] C. Petri, S. Meyer, F. Lenz, and P. Schmelcher, Correla-
tions and pair emission in the escape dynamics of ions
from one-dimensional traps, New J. Phys. 13, 023006
(2011).

[95] G.-Dar Lin and L. M. Duan, Equilibration and temperature
distribution in a driven ion chain, New J. Phys. 13, 075015
(2011).

[96] A. Bermúdez, M. Bruderer, and M. B. Plenio, Controlling
and Measuring Quantum Transport of Heat in Trapped-Ion
Crystals, Phys. Rev. Lett. 111, 040601 (2013).

[97] M. Ramm, T. Pruttivarasin, and H. Häffner, Energy
transport in trapped ion chains, New J. Phys. 16,
063062 (2014).

[98] N. Freitas, E. A. Martinez, and J. Pablo Paz, Heat transport
through ion crystals, Phys. Scr. 91, 013007 (2016).

[99] U. Schramm, T. Schätz, and D. Habs, Bunched Crystalline
Ion Beams, Phys. Rev. Lett. 87, 184801 (2001).

[100] U. Schramm, T. Schätz, and D. Habs, Three-dimensional
crystalline ion beams, Phys. Rev. E 66, 036501 (2002).

[101] J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander,
and T. E. Mehlstäubler, Probing nanofriction and Aubry-
type signatures in a finite self-organized system, Nat.
Commun. 8, 15364 (2017).

PRL 119, 153602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

153602-7

https://doi.org/10.1103/PhysRevB.38.6713
https://doi.org/10.1103/PhysRevE.48.4037
https://doi.org/10.1103/PhysRevE.85.032102
https://doi.org/10.1103/PhysRevE.85.032102
https://doi.org/10.1103/PhysRevE.92.052119
https://doi.org/10.1140/epjb/e2016-70359-0
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/PhysRevB.40.7045
https://doi.org/10.1103/PhysRevLett.55.1235
https://doi.org/10.1103/PhysRevA.82.061402
https://doi.org/10.1038/nphys3435
https://doi.org/10.1103/PhysRevE.92.032118
https://doi.org/10.1103/PhysRevLett.117.038103
https://doi.org/10.1103/PhysRevE.88.052202
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1038/ncomms10440
https://doi.org/10.1038/ncomms10440
https://doi.org/10.1088/1367-2630/17/8/083011
https://doi.org/10.1088/1367-2630/17/8/083011
https://doi.org/10.1103/PhysRevA.83.063401
https://doi.org/10.1103/PhysRevA.83.063401
https://doi.org/10.1088/1367-2630/13/2/023006
https://doi.org/10.1088/1367-2630/13/2/023006
https://doi.org/10.1088/1367-2630/13/7/075015
https://doi.org/10.1088/1367-2630/13/7/075015
https://doi.org/10.1103/PhysRevLett.111.040601
https://doi.org/10.1088/1367-2630/16/6/063062
https://doi.org/10.1088/1367-2630/16/6/063062
https://doi.org/10.1088/0031-8949/91/1/013007
https://doi.org/10.1103/PhysRevLett.87.184801
https://doi.org/10.1103/PhysRevE.66.036501
https://doi.org/10.1038/ncomms15364
https://doi.org/10.1038/ncomms15364

