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The generation of free energy landscapes corresponding to conformational equilibria in complex
molecular systems remains a significant computational challenge. Adding to this challenge is the need to
represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sampling
approaches employed to compute them. In this Letter, we propose the use of artificial neural networks as a
solution to these issues. Using specific examples, we discuss network training using enhanced-sampling
methods and the use of the networks in the calculation of ensemble averages.
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One of the outstanding challenges in the computational
molecular sciences is the accurate generation of free energy
surfaces (FESs) associated with conformational equilibria
of complex systems. FESs are ubiquitous, whether the
problem is to determine the conformational preferences of
peptides and proteins, to predict and rank polymorphs of a
molecular crystal, or to identify the binding sites of
molecules on a surface. FESs are typically represented
in terms of a set of order parameters or coarse-grained
variables (CGVs) whose values correspond to a set of
collective functions of the primitive atomic coordinates;
these functions are known as collective variables (CVs).
Since the CVs should ideally be chosen to capture the slow
modes of the system, as their number grows, so does the
number of minima and saddle points that characterize
the FES. If the saddles are of sufficiently high energy that
the probability to cross them is low, then rare-event or
enhanced-sampling methods such as metadynamics [1–3],
adiabatic free energy dynamics [4] and its variants [5,6],
and temperature-accelerated molecular dynamics [7] are
needed in order to generate a FES.
If a system is sufficiently complex, determining an optimal

set of CVs is far from trivial and remains a considerable
challenge. In some instances, it might be possible to discover
optimal CVs in the course of a calculation using automated
manifold learning techniques if sufficient sampling can be
achieved [8–11]. Often, however, these are chosen a priori
based on an intuitive guess guided by an understanding of the
physics of a system. In such cases, in order to capture the
essential conformational equilibria in a system, it can be
useful to employ a set ofCVs that contains some redundancy.
However they are chosen, the number of CVs or CGVs
needed to characterize a FES can be rather large, giving rise
to a high-dimensional FES (HDFES). Although the afore-
mentioned enhanced-sampling methods are generally

capable of generating HDFESs, the volume of data asso-
ciatedwith such a surface is big,which gives rise to a problem
of representing and storing a HDFES. Moreover, as free
energy is the generator of numerous equilibriumproperties, it
is often necessary to be able to perform calculations with a
HDFES, which, in principle, requires having an analytical
form for it.
In this Letter, we propose the use ofmachine learning (ML)

[12] techniques, specifically artificial neural networks
(ANNs), as a solution to the aforementioned issues.
ANNs, which have recently been employed in the generation
of model potential energy surfaces [13] and characterization
of local structure in polymorphic systems [14], provide a
compact representation of a HDFES, are flexible in their
mathematical structure, can be trained using stochastic
optimization techniques on free energy or gradient data
generated via enhanced-sampling methods, and are suffi-
ciently smooth that they can be subsequently employed in
Monte Carlo or molecular dynamics calculations in order to
compute equilibrium observables. Although ML methods
such as Gaussian process regression have been used to
explore and represent FESs [15–17], to our knowledge, this
is the first attempt to employ ANNs in this context. Here,
using training data generated from enhanced-sampling cal-
culations [5], we construct ANN representations of the FESs
of small peptides, specifically the alanine di- and tripeptides,
as test two- and four-dimensional surfaces, respectively, and
evaluate their performance against accurate benchmark FESs
[18]. We then employ ANNs to represent two HDFES: the
ten-dimensional FES corresponding to the five-residue oli-
gopeptide met-enkephalin and the five-dimensional FES
describing different crystal phases of xenon. For both
examples, we use the trained networks to compute a relevant
equilibrium observable: the NMR J-coupling parameters
for met-enkephalin and the isothermal compressibility for
crystal xenon.

PRL 119, 150601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

0031-9007=17=119(15)=150601(5) 150601-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.150601
https://doi.org/10.1103/PhysRevLett.119.150601
https://doi.org/10.1103/PhysRevLett.119.150601
https://doi.org/10.1103/PhysRevLett.119.150601


Consider a system of N atoms having positions
r1;…; rN ≡ r interacting via a potentialUðrÞ at temperature
T. The conformational space of interest is assumed to be
characterized by a set of nCVs denoted q1ðrÞ;…; qnðrÞ, and
the FES is then given by Aðs1;…;snÞ¼−β−1 lnPðs1;…;snÞ,
where Pðs1;…; snÞ is the marginal probability distribution

PðsÞ ¼ N −1
Z

dNre−βUðrÞYn
α¼1

δ(qαðrÞ − sα): ð1Þ

Here, N ¼R
dNrexp½−βUðrÞ�, β−1 ¼ kBT, and s1;…; sn ≡

s denotes the set of CGVs. Direct sampling of PðsÞ on an n-
dimensional grid rapidly becomes infeasible as n grows
beyond three or four dimensions, and, indeed, enhanced-
sampling methods like adiabatic free energy dynamics and
temperature-acceleratedmolecular dynamics are designed to
sample PðsÞ “on the fly.” Given this, the data generated by
such methods can serve as more than mere samples of the
marginal distribution: They can be used as the training data
for ML models of the FES from which free energy values at
points not sampled in the calculations can be predicted. If the
chosen ML model is an artificial neural network with K
hidden layers and M nodes in each layer, then the FES is
represented in the form

AANNðs;wÞ ¼ H

�XmK

jK¼1

h

�
…h

�Xm2

j2¼1

h

�Xm1

j1¼1

h

�Xn
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w2
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�
…

�
wK
jK
þ wK

0

�
: ð2Þ

The parameter set w denotes a complete set of fitting
parameters, with wν

ik connecting node i of layer ν with
node k of layer νþ 1, and hðxÞ and HðxÞ are activation
functions. In general, we allow the number of nodes in each
hidden layer to be different, as denoted by the values of
m1; m2;…; mK. A schematic of a neural network is shown
in Fig. 1. In essence, the ANN is being employed to “learn”
the integrals in Eq. (1).
Suppose an enhanced-sampling calculation generates M

values of the free energy AðλÞ at values sðλÞ ≡ sðλÞ1 ;…; sðλÞn of
the CVs, where λ ¼ 1;…;M. Then, the fitting is accom-
plished by setting up the cost function

EðwÞ ¼ 1

2M

XM
λ¼1

jAANNðsðλÞ;wÞ − AðλÞj2; ð3Þ

which is then minimized with respect to w, i.e., find the
solution of ∇wEðwÞ ¼ 0 to yield an optimal set of
parameters w for the given training set.
In some cases, it might be more advantageous to generate

free energy gradient data from enhanced-sampling calcu-
lations [19,20], in which case, training of the network can
also be achieved using a cost function:

EGðwÞ ¼
1

2M

XM
λ¼1

Xn
α¼1

���� ∂
∂sðλÞα

AANNðsðλÞ;wÞ þ FðλÞ
α

����2; ð4Þ

where FðλÞ
α ¼ −∂A=∂sðλÞα denotes the gradient data gener-

ated from the enhanced-sampling calculation. As before,
fitting is obtained by minimizing EG with respect to w.
Derivatives of the cost function with respect to the fitting
parameters are computed using the backpropagation
method [21,22], which is described in more detail in
Supplemental Material [23].
As a test case, we train ANNs to represent the FESs of the

alanine di- and tripeptides in the gas phase, systems for
which we have high-quality benchmark FESs [19]. In these
examples, interatomic interactions are described by the
CHARMM22 [24,25] force field. The results are compared
to benchmarks as calculated by Chen, Cuendet, and
Tuckerman [19]. As CVs, we use the backbone dihedral
angles (ϕ, ψ ), which give two- and four-dimensional FESs
for the di- and tripeptides, respectively. For each system,
free energy data are generated using the driven adiabatic
free energy dynamics method [5]. The CV temperature is set
to 1500 K, the CV mass is 168.0 amuÅ2=rad2, and the
harmonic coupling constant is 2.78 × 103 kcal=mol=rad2.
For the alanine dipeptide, data were generated on a two-
dimensional grid of 300 × 300 points for the two CVs. Of
these,M ¼ 40 000 randomly chosen grid points were used to
train the network, and the remaining 50 000 were used for
validation. For the case of the alanine tripeptide, 2 × 105

random CV values were generated, and their free energy
values obtained using the Gaussian fit of Chen, Cuendet, and
Tuckerman [19]. Of these, M ¼ 105 were used for training,
and the remaining 105 were used for validation. In both cases,
the architecture of the ANN contained two hidden layers
with 20 nodes in each layer for the alanine dipeptide
and 40 nodes in each layer for the alanine tripeptide
(we discuss these architecture choices in Ref. [23]).

FIG. 1. Schematic representation of an artificial neural network
that takes in n CGV values and outputs the free energy AðsÞ and
possibly its gradient ∂A=∂sα. The network containsm1;m2;…;mK

nodes each of K hidden layers. In each node, xij are the arguments
of the activation functions in Eq. (2).
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The activation functions were chosen to be hðxÞ¼
1=ð1þx2Þ, HðxÞ ¼ x. In Fig. 2, we show the L2 error ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NvÞ

PNv
λ¼1½AANNðsðλÞ;woptÞ − AbenchðsðλÞÞ�2

q
, of the

FESs represented by theANNswith respect to the benchmark
from Ref. [19] as a function of the number of free energy
points used to train thenetworks for both the alanine dipeptide
(left panel) and the alanine tripeptide (right panel). In this
expression, Nv is the number of validation points. Here wopt

denotes the optimal parameter set. The figure shows a clear
convergence of the ANN representation with 103 training
points for alanine dipeptide and 104 points for the alanine
tripeptide, leading to anoverall accuracy of0.03 kcal=mol for
the dipeptide and 0.2 kcal=mol for the tripeptide.
For both systems, we also trained gradient-based ANNs

using gradient data generated from the same driven
adiabatic free energy dynamics calculations [5,19]. In
the case of the alanine dipeptide, we used 1600 gradients
on a 40 × 40 grid, and for the alanine tripeptide, we used
105 random gradient vectors. In both cases, we obtain L2

errors similar to those obtained with the ANNs trained from
the free energy. Figure 3 shows the two-dimensional FES
produced by the gradient-trained ANN (left panel) and a
comparison between the FES of the alanine tripeptide
obtained by the gradient-trained ANN and the free-
energy-trained ANN (right panel). Both results show the

ability of the gradient-based approach to obtain an accu-
rate FES.
Once trained, the ANNs for the alanine di- and tripep-

tides were employed to compute the ensemble average of a
physical observable following the procedure of Ref. [20].
Given an observableOðrÞ, the FES AANNðs;woptÞ evaluated
at the optimal parameter values wopt can be used to compute
the ensemble average hOi via

hOi ¼
R
dnshOirðsÞe−βAANNðs;woptÞR

dnse−βAANNðs;woptÞ ; ð5Þ

where hOirðsÞ is defined by

hOirðsÞ ¼
N −1

PðsÞ
Z

dNrOðrÞe−βUðrÞ Yn
α¼1

δ(qαðrÞ − sα): ð6Þ

If OðrÞ can be expressed entirely in terms of the CVs, then
Eq. (6) becomes unnecessary. For the alanine di- and
tripeptides, we computed the ensemble average of the
root-mean-square deviation (RMSD) of the dihedral angles
defined by

Oðϕ;ψÞ≡ RMSDðϕ;ψÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n

Xn
i¼1

½ðϕi − ϕminÞ2 þ ðψ i − ψminÞ2�
s

; ð7Þ

where n ¼ 1, 2 for the alanine di- and tripeptide, respec-
tively, and the set of dihedral angles (ϕmin, ψmin) represents
the global minimum of the FES. The motivation for
choosing this “observable” is that it is a function of all
of the chosen CVs and, hence, tests the reliability of the full
ANN-based FES. The integrals in Eq. (5) were computed
using a Metropolis Monte Carlo algorithm at temperature
T ¼ 300 K using 5 × 107 steps. The use of Monte Carlo
requires that the ANN be able to predict free energy values
for any proposed trial move, which here is made by
sampling a uniform distribution in the angle space. In
Fig. 4, we show the convergence of the RMSD in Eq. (7) as
a function of the number of points in the training set. For
the dipeptide, we observe convergence with just a few
hundred training points, obtaining a RMSD average of
56.0°� 0.2°. For the tripeptide, convergence is obtained
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FIG. 2. The L2 global error versus the number of training points
in the training set for the alanine dipeptide (left) and the alanine
tripeptide (right).

FIG. 3. FES of the alanine dipeptide in the gas phase generated
by a trained ANN based on the free energy gradient using training
data of Chen, Cuendet, and Tuckerman [19] (left). Comparison of
free energies generated using the gradient-based ANN for the
gas-phase alanine tripeptide and free energies obtained directly
from the free-energy-based ANN used to generate Fig. 2. The
black line represent the identity function fðxÞ ¼ x.
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FIG. 4. The ensemble average of the RMSD observable defined
in Eq. (7) for the alanine dipeptide (left) and alanine tripeptide
(right) as a function of the number of data in the training set.
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after a few thousand training points around a value of
59.5°� 0.5°. Comparing the value obtained using an ANN
against the ensemble average of the RMSD based on the
FES obtained with a Gaussian fit (56.3°� 0.1° and 58.3°�
0.3° for the alanine di- and tripeptide, respectively), we find
that ANNs can faithfully reproduce the RMSD values.
As an example of a HDFES for a peptide, we consider the

pentapeptide met-enkephalin, which has the sequence tyr-
gly-gly-phe-met. This small peptide is well known as an
endogenous ligand of opioid receptors and is distributed
throughout the central nervous system. In Ref. [18], the
complete set of free energy minima and saddle points as a
function of the ten backbone dihedral angles and converged
free energy differences between these points were computed
using the driven adiabatic free energydynamics algorithm [5]
where the CV temperature is set to 400 K, the CV mass is
2.8 amuÅ2=rad2, and the harmonic coupling constant is
2.78 × 103 kcal=mol=rad2. In particular, 1081 minima and
1431 saddles were uncovered in these calculations for a
total of 2512 “landmark” points on the FES. The data
from a set of 7.5 × 105 random CVs from a 500 ns driven
adiabatic free energy dynamics simulation were used
to train a neural network based on their free energy values.
The architecture of the ANN contained three hidden layers
with 100 nodes in the first two layers and 50 in a third,
the addition of which gives significantly higher accuracy.
The trained ANN was subsequently used to compute the
ensemble average of the NMR spin-spin J-coupling
constants for each ϕ, ψ Ramachandran dihedral angle
pair in the five-residue sequence using the Karplus equation
[26] JðϕÞ¼Acos2ðϕ−ϕ0ÞþBcosðϕ−ϕ1ÞþC, where ϕ0¼
ϕ1¼60°, A ¼ 7.09 Hz, B ¼ −1.42 Hz, and C ¼ 1.55 Hz,
which correspond to the parameters reported in Ref. [27] for
the NMR spin-spin J coupling between hydrogen atoms HN
and Hα in each peptide backbone. The average in Eq. (5) is
computed for each residue using Metropolis Monte Carlo
simulations of 5 × 107 steps at a temperature of 300 K with
the trial values sampled fromauniformdistribution in the ten-
dimensional dihedral-angle space. In order to benchmark the
J couplings from theANN,we additionally performed a long
NVT simulation, collecting 17 μs and averaging JðϕÞ using
snapshots written out every 100 fs. The results are shown in
Fig. 5. The figure shows that this observable is accurately
predicted by the ANN for each residue after roughly 3 × 104

training points. TheNVT results and the converged integrals
computed with a trained ANN match within an error of 5%,
confirming the accuracy of our calculation. Considering the
high dimensionality of the FES and the large number of
landmark points on it, the roughly 30 000 training points
needed to converge the J couplings constitutes a remarkably
sparse distribution of points on this HDFES required to reach
convergence. In general, the ten-dimensional HDFES asso-
ciated with met-enkephalin is far too large to represent
explicitly, which renders the direct computation of observ-
ables such as the J couplings from fully atomistic molecular

dynamics calculations significantly more laborious. Clearly,
then, ANNs, once trained, provide a sufficiently compact
representation that the calculation can be performed straight-
forwardly and efficiently.
As an additional application, we employ an ANN to learn

the free energy landscape of a crystal system. The possibility
of a crystallographic fcc-bcc phase transition in solid xenon
at a high pressure (25–30GPa) near themelting point (2700–
2900K)has been debated in the literature [28–32]. In order to
sample the HDFES, we performed periodic driven adiabatic
free energy dynamics calculations on a systemof 4000 xenon
atoms interacting via a Buckingham potential [33] at 2700 K
and 25 GPa pressure. The CVs consisted of the Steinhardt
order parametersQ4 andQ6 [34] and the cell lengths jaj, jbj,
and jcj, yielding a five-dimensional FES. The data from a set
of 5 × 105 random CV configurations chosen from the
200 ns driven adiabatic free energy dynamics run were used
to train a neural network based on free energy values. The
architecture of the ANN consisted of two hidden layers with
80 nodes in each layer. The left panel in Fig. 6 shows the two-
dimensional projection onto the Q4-Q6 plane of the FES
generated by the trained ANN. The two deepest minima
represent bcc and fcc stable structures, while the local
minima between them represent an hcp metastable state.
The irregular integration domain suggested by the

projection in Fig. 6 represents the thermodynamically
accessible region accessed in the driven adiabatic free
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energy dynamics simulation. This unusual domain
renders the application of Eq. (5) less straightforward.
Consequently, we employed a second ANN to classify
all points on the five-dimensional landscape in terms of their
thermodynamic accessibility, thereby defining an integra-
tion domain (see [23] for details). We collected a training set
of 4 × 105 points using a free energy threshold of 20 eV to
label each point. The trained ANNs were subsequently
used to compute the ensemble average of the isothermal
compressibility χ of the system defined as χ ¼
−ð1=hViÞð∂hVi=∂PÞ ¼ βhðV − hViÞ2i=hVi, where hVi is
the average volume of the system. The required ensemble
averages were computed using Monte Carlo simulations
of 108 random points. The right panel in Fig. 6 shows
the dependence of the compressibility on the number
of point in the training set. We observe an accurate
result after roughly 2 × 104 points with a final value of
χ ¼ 0.020� 0.005 GPa−1. The computed value is slightly
higher than the measured compressibility χ ∼ 0.008 GPa−1

at room temperature and 25 GPa of Ref. [35].
We have shown that machine learning techniques such as

ANNs can provide a smooth and compact way to represent
HDFESs in complex systems, not only allowing the free
energy differences to be obtained easily but also permitting
ensemble averages to be computed directly from the
machine learning model. In future work, we will explore
other machine learning models [15–17] and investigate the
application of machine learning techniques to the predic-
tion of structure and polymorphism in molecular crystals
[36,37] and to the study of conformational transitions in
macromolecules, where high dimensionality limits the
capabilities of enhanced-sampling approaches.
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