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The operational characterization of quantum coherence is the cornerstone in the development of the
resource theory of coherence. We introduce a new coherence quantifier based on maximum relative
entropy. We prove that the maximum relative entropy of coherence is directly related to the maximum
overlap with maximally coherent states under a particular class of operations, which provides an
operational interpretation of the maximum relative entropy of coherence. Moreover, we show that, for
any coherent state, there are examples of subchannel discrimination problems such that this coherent state
allows for a higher probability of successfully discriminating subchannels than that of all incoherent states.
This advantage of coherent states in subchannel discrimination can be exactly characterized by the
maximum relative entropy of coherence. By introducing a suitable smooth maximum relative entropy of
coherence, we prove that the smooth maximum relative entropy of coherence provides a lower bound of
one-shot coherence cost, and the maximum relative entropy of coherence is equivalent to the relative
entropy of coherence in the asymptotic limit. Similar to the maximum relative entropy of coherence, the
minimum relative entropy of coherence has also been investigated. We show that the minimum relative
entropy of coherence provides an upper bound of one-shot coherence distillation, and in the asymptotic
limit the minimum relative entropy of coherence is equivalent to the relative entropy of coherence.
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Introduction.—Quantumness in a single system is char-
acterized by quantum coherence, namely, the superposition
of a state in a given reference basis. The coherence of a state
may quantify the capacity of a system in many quantum
manipulations, ranging from metrology [1] to thermody-
namics [2,3]. Recently, various efforts have been made to
develop a resource theory of coherence [4–10]. One of the
earlier resource theories is that of quantum entanglement
[11], which is a basic resource for various quantum
information-processing protocols such as superdense cod-
ing [12], remote state preparation [13,14], and quantum
teleportation [15]. Other notable examples include the
resource theories of asymmetry [16–22], thermodynamics
[23], and steering [24]. One of the main advantages that a
resource theory offers is the lucid quantitative and opera-
tional description as well as the manipulation of the
relevant resources at one’s disposal; thus, the operational
characterization of quantum coherence is required in the
resource theory of coherence.
A resource theory is usually composed of two basic

elements: free states and free operations. The set of allowed
states (operations) under the given constraint is what we
call the set of free states (operations). Given a fixed basis,
say, fjiigd−1i¼0 for a d-dimensional system, any quantum state
which is diagonal in the reference basis is called an
incoherent state and is a free state in the resource theory

of coherence. The set of incoherent states is denoted by I.
Any quantum state can be mapped into an incoherent
state by a full dephasing operation Δ, where ΔðρÞ ≔P

d−1
i¼0 hijρjiijiihij. However, there is no general consensus

on the set of free operations in the resource theory of
coherence. We refer the following types of free operations
in this work: maximally incoherent operations (MIO) [25],
incoherent operations (IO) [4], dephasing-covariant oper-
ations (DIO) [25], and strictly incoherent operations (SIO)
[10,25]. By MIO, we refer to the maximal set of quantum
operations Φ which maps the incoherent states into
incoherent states, i.e., ΦðIÞ ⊂ I [25]. IO is the set of all
quantum operations Φ that admit a set of Kraus operators
fKig such that Φð·Þ ¼ P

iKið·ÞK†
i and KiIK

†
i ⊂ I for any

i [4]. DIO are the quantum operations Φ with ½Δ;Φ� ¼ 0
[25]. SIO is the set of all quantum operationsΦ admitting a
set of Kraus operators fKig such that Φð·Þ ¼ P

iKið·ÞK†
i

and ΔðKiρK
†
i Þ ¼ KiΔðρÞK†

i for any i and any quantum
state ρ. Both IO and DIO are subsets of MIO, and SIO is a
subset of both IO and DIO [25]. However, IO and DIO are
two different types of free operations, and there is no
inclusion relationship between them (the operational gap
between them can be seen in Ref. [26]).
Several operational coherence quantifiers have been

introduced as candidate coherence measures, subjecting
to physical requirements such as monotonicity under
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certain types of free operations in the resource theory of
coherence. One canonical measure to quantify coherence is
the relative entropy of coherence, which is defined as
CrðρÞ ¼ S½ΔðρÞ� − SðρÞ, where SðρÞ ¼ −Tr½ρ log ρ� is the
von Neumann entropy [4]. The relative entropy of coher-
ence plays an important role in the process of coherence
distillation, in which it can be interpreted as the optimal rate
to distill a maximally coherent state from a given state ρ by
IO in the asymptotic limit [7]. Besides, the l1 norm of
coherence [4], which is defined as Cl1ðρÞ ¼

P
i≠jjρijj with

ρij ¼ hijρjji, has also attracted lots of discussions about its
operational interpretation [27]. Recently, an operationally
motivated coherence measure—robustness of coherence
(ROC)—has been introduced, which quantifies the minimal
mixing required to erase the coherence in a given quantum
state [28,29]. There is growing concern about the opera-
tional characterization of quantum coherence, and further
investigations are needed to provide an explicit and
rigorous operational interpretation of coherence.
In this Letter, we introduce a new coherence measure

based on maximum relative entropy and focus on its
operational characterizations. Maximum and minimum
relative entropies have been introduced and investigated
in Refs. [30–33]. The well-known (conditional and uncon-
ditional) maximum and minimum entropies [34,35] can be
obtained from these two quantities. It has been shown that
maximum and minimum entropies are of operational
significance in applications ranging from data compression
[34,36] to state merging [37] and security of key [38,39].
Besides, maximum and minimum relative entropies have
been used to define entanglement monotone, and their
operational significance in the manipulation of entangle-
ment has been provided in Refs. [30–33]. Here, we define
maximum relative of coherence Cmax based on maximum
relative entropy and investigate the properties of Cmax. We
prove that the maximum relative entropy of coherence for a
given state ρ is the maximum achievable overlap with
maximally coherent states under DIO, IO, and SIO, which
gives rise to an operational interpretation of Cmax and
shows the equivalence among DIO, IO, and SIO in an
operational task. Besides, we show that the maximum
relative entropy of coherence characterizes the role of
quantum states in an operational task: subchannel discrimi-
nation. Subchannel discrimination is an important quantum
information task which distinguishes the branches of a
quantum evolution for a quantum system to undergo [40]. It
has been shown that every entangled or steerable state is a
resource in some instance of subchannel discrimination
problems [40,41]. Here, we prove that every coherent state
is useful in the subchannel discrimination of certain instru-
ments, where the usefulness can be quantified by the
maximum relative entropy of coherence of the given
quantum state. By smoothing the maximum relative
entropy of coherence, we introduce ε-smoothed maximum
relative entropy of coherence Cε

max for any fixed ε > 0 and

show that the smooth maximum relative entropy gives an
lower bound of coherence cost in a one-shot version.
Moreover, we prove that, for any quantum state, the
maximum relative entropy of coherence is equivalent to
the relative entropy of coherence in the asymptotic limit.
Corresponding to the maximum relative entropy of

coherence, we also introduce the minimum relative entropy
of coherence Cmin by minimum relative entropy, which is
not a proper coherence measure as it may increase on
average under IO. However, it gives an upper bound for the
maximum overlap between the given states and the set of
incoherent states. This implies that the minimum relative
entropy of coherence also provides a lower bound of a well-
known coherence measure, the geometry of coherence [6].
By smoothing the minimum relative entropy of coherence,
we introduce ε-smoothed minimum relative entropy of
coherence Cε

min for any fixed ε > 0 and show that the
smooth maximum relative entropy gives an upper bound of
coherence distillation in a one-shot version. Furthermore,
we show that the minimum relative of coherence is also
equivalent to the distillation of coherence in the asymptotic
limit. The relationship among Cmin, Cmax, and other
coherence measures has also been investigated.
Main results.—Let H be a d-dimensional Hilbert space

and DðHÞ be the set of density operators acting on H.
Given two operators ρ and σ with ρ ≥ 0, Tr½ρ� ≤ 1, and
σ ≥ 0, the maximum relative entropy of ρ with respect to σ
is defined by [30,31]

DmaxðρjjσÞ ≔ minfλ∶ρ ≤ 2λσg: ð1Þ

We introduce a new coherence quantifier by maximum
relative entropy: maximum relative entropy of coherence
Cmax,

CmaxðρÞ ≔ min
σ∈I

DmaxðρjjσÞ; ð2Þ

where I is the set of incoherent states in DðHÞ.
We now show that Cmax satisfies the conditions a

coherence measure needs to fulfil. First, it is obvious that
CmaxðρÞ ≥ 0. And since DmaxðρjjσÞ ¼ 0 iff ρ ¼ σ [30],
we have CmaxðρÞ ¼ 0 if and only if ρ ∈ I . Besides, as
Dmax is monotone under completely positive and trace
preserving (CPTP) maps [30], we have Cmax½ΦðρÞ� ≤
CmaxðρÞ for any incoherent operation Φ. Moreover, Cmax
is nonincreasing on average under incoherent operations;
that is, for any incoherent operation Φð·Þ ¼ P

iKið·ÞK†
i

with KiIK
†
i ⊂ I ,

P
ipiCmaxð~ρiÞ ≤ CmaxðρÞ, where pi ¼

Tr½KiρK
†
i � and ~ρi ¼ KiρK

†
i =pi; see the proof in

Supplemental Material [42].
Remark.—We have proven that the maximum relative

entropy of coherence Cmax is a bona fide measure of
coherence. Since Dmax is not jointly convex, we may not
expect that Cmax has convexity, which is a desirable
(although not a fundamental) property for a coherence
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quantifier. However, we can prove that, for ρ ¼ P
n
i piρi,

CmaxðρÞ ≤ maxiCmaxðρiÞ. Suppose that CmaxðρiÞ ¼
Dmaxðρijjσ�i Þ for some σ�i ; then from the fact that
Dmaxð

P
ipiρijj

P
ipiσiÞ ≤ maxiDmaxðρijjσiÞ [30], we have

CmaxðρÞ ≤ Dmaxð
P

ipiρijj
P

ipiσ
�
i Þ ≤ maxiDmaxðρijjσ�i Þ ¼

maxiCmaxðρiÞ. Besides, although Cmax is not convex, we
can obtain a proper coherence measure with convexity from
Cmax by the approach of a convex roof extension; see
Supplemental Material [42].
In the following, we concentrate on the operational

characterization of the maximum relative entropy of coher-
ence and provide operational interpretations of Cmax.
Maximum overlap with maximally coherent states.—At

first we show that 2Cmax is equal to the maximum overlap
with the maximally coherent state that can be achieved by
DIO, IO, and SIO.
Theorem 1.—Given a quantum state ρ ∈ DðHÞ, we have

2CmaxðρÞ ¼ dmax
E;jΨi

F½EðρÞ; jΨihΨj�2; ð3Þ

where Fðρ; σÞ ¼ Tr½j ffiffiffi
ρ

p ffiffiffi
σ

p j� is the fidelity between states
ρ and σ [54], jΨi ∈ M,M is the set of maximally coherent
states in DðHÞ, and E belongs to either DIO, IO, or SIO.
(See the proof in Supplemental Material [42].)
Here, although IO, DIO, and SIO are different types of

free operations in the resource theory of coherence [25,26],
they have the same behavior in the maximum overlap with
the maximally coherent states. From the view of coherence
distillation [7], the maximum overlap with maximally
coherent states can be regarded as the distillation of
coherence from given states under IO, DIO, and SIO.
As fidelity can be used to define certain distances, thus
CmaxðρÞ can also be viewed as the distance between the set
of a maximally coherent state and the set of fEðρÞgE∈θ,
where θ ¼ DIO, IO, or SIO.
Besides distillation of coherence, another kind of coher-

ence manipulation is the coherence cost [7]. Now we study
the one-shot version of coherence cost under MIO based on
the smooth maximum relative entropy of coherence. We
define the one-shot coherence cost of a quantum state ρ
under MIO as

Cð1Þ;ε
C;MIOðρÞ ≔ min

E∈MIO
M∈Z

flogM∶F½ρ; EðjΨMþ ihΨMþ jÞ�2 ≥ 1 − εg;

where jΨMþ i ¼ ð1= ffiffiffiffiffi
M

p ÞPM
i¼1 jii, Z is the set of integer,

and ε > 0. The ε-smoothed maximum relative entropy of
coherence of a quantum state ρ is defined by

Cε
maxðρÞ ≔ min

ρ0∈BεðρÞ
Cmaxðρ0Þ; ð4Þ

where BεðρÞ ≔ fρ0 ≥ 0∶∥ρ0 − ρ∥1 ≤ ε, Tr½ρ0� ≤ Tr½ρ�. We
find that the smooth maximum relative entropy of coher-
ence gives a lower bound of the one-shot coherence cost.
Given a quantum state ρ ∈ DðHÞ, for any ε > 0,

Cε0
maxðρÞ ≤ Cð1Þ;ε

C;MIOðρÞ; ð5Þ

where ε0 ¼ 2
ffiffiffi
ε

p
; see the proof in Supplemental

Material [42].
Besides, in view of the smooth maximum relative

entropy of coherence, we can obtain the equivalence
between the maximum relative entropy of coherence and
the relative entropy of coherence in the asymptotic limit.
Since the relative entropy of coherence is the optimal rate to
distill a maximally coherent state from a given state under
certain free operations in the asymptotic limit [7], the
smooth maximum relative entropy of coherence in the
asymptotic limit is just the distillation of coherence. That is,
given a quantum state ρ ∈ DðHÞ, we have

lim
ε→0

lim
n→∞

1

n
Cε
maxðρ⊗nÞ ¼ CrðρÞ: ð6Þ

(The proof is presented in Supplemental Material [42].)
Maximum advantage achievable in subchannel

discrimination.—Now, we investigate another quantum
information-processing task: subchannel discrimination,
which can also provide an operational interpretation of
Cmax. Subchannel discrimination is an important quantum
information task which is used to identify the branch of a
quantum evolution to undergo. We consider some special
instance of the subchannel discrimination problem to show
the advantage of coherent states.
A linear completely positive and trace nonincreasing

map E is called a subchannel. If a subchannel E is trace
preserving, then E is called a channel. An instrument I ¼
fEaga for a channel E is a collection of subchannels Ea with
E ¼ P

aEa, and every instrument has its physical realiza-
tion [40]. A dephasing covariant instrumentID for a DIO E
is a collection of subchannels fEaga such that E ¼ P

aEa.
Similarly, we can define incoherent instrument II and
strictly incoherent instrument IS for channel E ∈ IO and
E ∈ SIO, respectively.
Given an instrument I ¼ fEaga for a quantum channel

E, let us consider a positive operator valued measurement
(POVM) fMbgb with

P
bMb ¼ I. The probability of

successfully discriminating the subchannels in instrument
I by POVM fMbgb for input state ρ is given by

psuccðI; fMbgb; ρÞ ¼
X

a

Tr½EaðρÞMa�: ð7Þ

The optimal probability of success in subchannel discrimi-
nation of I over all POVMs is given by

psuccðI; ρÞ ¼ max
fMbgb

psuccðI; fMbgb; ρÞ: ð8Þ

If we restrict the input states to be incoherent ones, then the
optimal probability of success among all incoherent states
is given by

pICO
succðIÞ ¼ max

σ∈I
psuccðI; σÞ: ð9Þ

We have the following theorem.
Theorem 2.—Given a quantum state ρ, 2CmaxðρÞ is the

maximal advantage achievable by ρ compared with
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incoherent states in all subchannel discrimination problems
of dephasing-covariant, incoherent, and strictly incoherent
instruments:

2CmaxðρÞ ¼ max
I

psuccðI; ρÞ
pICO
succðIÞ ; ð10Þ

where I is either ID, II , or IS, denoting the dephasing-
covariant, incoherent, and strictly incoherent instrument,
respectively.
The proof of Theorem 2 is presented in Supplemental

Material [42]. This result shows that the advantage of
coherent states in certain instances of subchannel discrimi-
nation problems can be exactly captured by Cmax, which
provides another operational interpretation of Cmax and also
shows the equivalence among DIO, IO, and SIO in the
information-processing task of subchannel discrimination.
Minimum relative entropy of coherence CminðρÞ.—Given

two operators ρ and σ with ρ ≥ 0, Tr½ρ� ≤ 1, and σ ≥ 0, the
maximum and minimum relative entropy of ρ relative to σ
are defined as

DminðρjjσÞ ≔ − log Tr½Πρσ�; ð11Þ
where Πρ denotes the projector onto suppρ, the support of
ρ. Corresponding to CmaxðρÞ defined in (2), we can
similarly introduce a quantity defined by the minimum
relative entropy:

CminðρÞ ≔ min
σ∈I

DminðρjjσÞ: ð12Þ

Since DminðρjjσÞ ¼ 0 if suppρ ¼ suppσ [30], we have
ρ ∈ I ⇒ CminðρÞ ¼ 0. However, the converse direction
may not be true; for example, let ρ ¼ 1

2
j0ih0j þ 1

2
jþihþj

with jþi ¼ 1=
ffiffiffi
2

p ðj1i þ j2iÞ, and then ρ is coherent but
CminðρÞ ¼ 0. Besides, as Dmin is monotone under CPTP
maps [30], we have Cmin½ΦðρÞ� ≤ CminðρÞ for any Φ ∈ IO.
However, Cmin may increase on average under IO (see
Supplemental Material [42]). Thus, Cmin is not a proper
coherence measure as Cmax.
Although Cmin is not a good coherence quantifier, it still

has some interesting properties in the manipulation of
coherence. First, Cmin gives an upper bound of the
maximum overlap with the set of incoherent states for
any given quantum state ρ ∈ DðHÞ:

2−CminðρÞ ≥ max
σ∈I

Fðρ; σÞ2: ð13Þ

Moreover, if ρ is pure state jψi, then the above equality
holds; that is,

2−CminðψÞ ¼ max
σ∈I

Fðψ ; σÞ2: ð14Þ

See the proof in Supplemental Material [42].
Moreover, for the geometry of coherence defined by

CgðρÞ ¼ 1 −maxσ∈IFðρ; σÞ2 [6], Cmin also provides a
lower bound for Cg as follows:

CgðρÞ ≥ 1 − 2−CminðρÞ: ð15Þ
Now let us consider again the one-shot version of

distillable coherence under MIO by modifying and smooth-
ing the minimum relative entropy of coherence Cmin. We
define the one-shot distillable coherence of a quantum state
ρ under MIO as

Cð1Þ;ε
D;MIOðρÞ ≔ max

E∈MIO
M∈Z

flogM∶F½EðρÞ; jΨMþ ihΨMþ j�2 ≥ 1 − εg;

where jΨMþ i ¼ ð1= ffiffiffiffiffi
M

p ÞPM
i¼1 jii and ε > 0.

For any ε > 0, we define the smooth minimum relative
entropy of coherence of a quantum state ρ as follows:

Cε
minðρÞ ≔ max

0≤A≤I
Tr½Aρ�≥1−ε

min
σ∈I

− log Tr½Aσ�; ð16Þ

where I denotes the identity. It can be shown that Cε
min is an

upper bound of one-shot distillable coherence,

Cð1Þ;ε
D;MIOðρÞ ≤ Cε

minðρÞ ð17Þ
for any ε > 0; see the proof in Supplemental Material [42].
The distillation of coherence in the asymptotic limit can

be expressed as

CD;MIO ¼ lim
ε→0

lim
n→∞

1

n
Cð1Þ;ε
D;MIOðρÞ:

It has been proven that CD;MIOðρÞ ¼ CrðρÞ [7]. Here we
show that the equality in inequality (18) holds in the
asymptotic limit as the Cmin is equivalent to Cr in the
asymptotic limit. Given a quantum state ρ ∈ DðHÞ, then

lim
ε→0

lim
n→∞

1

n
Cε
minðρ⊗nÞ ¼ CrðρÞ: ð18Þ

(The proof is presented in Supplemental Material [42].)
We have shown that Cmin gives rise to the bounds

for maximum overlap with the incoherent states and for
one-shot distillable coherence. Indeed, the exact expression
of Cmin for some special class of quantum states can
be calculated. For pure state jψi ¼ P

d
i¼1 ψ ijii withP

d
i¼1 jψ ij2 ¼ 1, we have CminðψÞ ¼ − logmaxijψ ij2. For

maximally coherent state jΨi ¼ ð1= ffiffiffi
d

p ÞPd
j¼1 e

iθj jji, we
have CminðΨÞ ¼ log d, which is the maximum value for
Cmin in d-dimensional space.
Relationship between Cmax and other coherence

measures.—First, we investigate the relationship among
Cmax,Cmin, andCr. SinceDminðρjjσÞ≤SðρjjσÞ≤DmaxðρjjσÞ
for any quantum states ρ and σ [30], one has

CminðρÞ ≤ CrðρÞ ≤ CmaxðρÞ: ð19Þ
Moreover, as mentioned before, these quantities are all
equal in the asymptotic limit.
Above all, Cmax is equal to the logarithm of robustness

of coherence, as ROCðρÞ ¼ minσ∈Ifs ≥ 0jρ ≤ ð1þ sÞσg
and CmaxðρÞ ¼ minσ∈I minfλ∶ρ ≤ 2λσg [25]; that is,
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2CmaxðρÞ ¼ 1þ ROCðρÞ. Thus, the operational interpreta-
tions of Cmax in terms of maximum overlap with maximally
coherent states and subchannel discrimination can also be
viewed as the operational interpretations of ROC. It is
known that robustness of coherence plays an important role
in a phase discrimination task, which provides an opera-
tional interpretation for robustness of coherence [28]. This
phase discrimination task investigated in Ref. [28] is just
a special case of the subchannel discrimination in dephas-
ing-covariant instruments. Because of the relationship
between Cmax and ROC, we can obtain the closed form
of Cmax for some special class of quantum states. As an
example, let us consider a pure state jψi ¼ P

d
i¼1 ψ ijii.

Then CmaxðψÞ¼ log½ðPd
i¼1 jψ ijÞ2�¼2logðPd

i¼1 jψ ijÞ. Thus,
for maximally coherent state jΨi ¼ ð1= ffiffiffi

d
p ÞPd

j¼1 e
iθj jji,

we have CmaxðΨÞ ¼ log d, which is the maximum value for
Cmax in d-dimensional space.
Since ROCðρÞ≤Cl1ðρÞ [28] and 1þROCðρÞ¼ 2CmaxðρÞ,

then CmaxðρÞ ≤ log½1þ Cl1ðρÞ�. We have the relationship
among these coherence measures,

CminðρÞ ≤ CrðρÞ ≤ CmaxðρÞ ¼ log½1þ ROCðρÞ�
≤ log½1þ Cl1ðρÞ�;

which implies that 2CrðρÞ ≤ 1þ Cl1ðρÞ (see also [27]).
Conclusion.—We have investigated the properties of the

maximum and minimum relative entropy of coherence,
especially the operational interpretation of the maximum
relative entropy of coherence. It has been found that the
maximum relative entropy of coherence characterizes the
maximum overlap with the maximally coherent states
under DIO, IO, and SIO, as well as the maximum
advantage achievable by coherent states compared with
all incoherent states in subchannel discrimination problems
of all dephasing-covariant, incoherent, and strictly inco-
herent instruments, which also provides new operational
interpretations of robustness of coherence and illustrates
the equivalence of DIO, IO, and SIO in these two opera-
tional tasks. The study of Cmax and Cmin also makes the
relationship between the operational coherence measures
(e.g., Cr and Cl1) more clear. These results may highlight
the understanding of the operational resource theory of
coherence.
Besides, the relationships among the smooth maximum

and minimum relative entropy of coherence and one-shot
coherence cost and distillation have been investigated
explicitly. As both the smooth maximum and minimum
relative entropy of coherence are equal to the relative
entropy of coherence in the asymptotic limit and because of
the significance of the relative entropy of coherence in the
distillation of coherence, further studies are desired on the
one-shot coherence cost and distillation.
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