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A strong nonlinear coupling between harmonic oscillators is highly desirable for quantum information
processing and quantum simulation, but is difficult to achieve in many physical systems. Here, we exploit
the Coulomb interaction between two trapped ions to achieve strong nonlinear coupling between normal
modes of motion at the single-phonon level. We experimentally demonstrate phonon up- and down-
conversion and apply this coupling to directly measure the parity and Wigner functions of the ions’
motional states. Our results represent the fully quantum operation of a degenerate parametric oscillator and
hold promise for quantum computation schemes that involve continuous variables.
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A system of harmonic oscillators coupled via nonlinear
interaction, first studied in mechanical systems in the
nineteenth century [1], is a fundamental model in many
branches of physics, from biophysics to electronics and
condensed matter. In quantum optics, weak nonlinear
interaction between light modes has enabled the generation
of squeezed states and entangled photons [2]. However,
stronger interactions are required for numerous applications
of quantum computation and simulation [3–9]. While
strong nonlinear interaction between modes has been
demonstrated in circuit QED [10,11], achieving significant
coupling with single quanta in other physical systems
remains a challenge [3,12].
Cold atomic ions confined in rf Paul traps provide

a well-established system for quantum information
processing because it allows for perfect control and long
coherence times of both internal and motional states [13].
Trapped ions experience a pseudopotential that is harmonic
to a high degree and their motion is usually approximated
by a set of noninteracting normal modes. Coulomb inter-
action between the ions is, however, nonlinear and can
introduce coupling between the modes and anharmonicity
to the ion motion [14,15]. The linear coupling of motional
modes due to mutual Coulomb repulsion of ions in
independent potential wells was previously demonstrated
in the quantum regime [16,17]. The higher order terms in
the Coulomb interaction lead, for example, to a cross-Kerr-
type nonlinear coupling that shifts the normal mode
frequencies [14,15] which has been experimentally
observed [18]. The nonlinear interactions between internal
and motional states of a single trapped ion have also been
reported [19].
Here, we use two cotrapped ions to demonstrate a strong

nonlinear interaction between two normal modes of motion
that is equivalent to a degenerate parametric oscillator [2].
We consider a system of two ions with the same mass m
and charge e in a linear Paul trap with single-ion secular

frequencies ωx, ωy, ωz. The potential energy of the system
is [14,15]

V ¼ mω2
xðX2 þ x2Þ þmω2

yðY2 þ y2Þ þmω2
zðZ2 þ z2Þ

þ e2

8πϵ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; ð1Þ

where ϵ0 is the permittivity of free space, X, Y, Z are the
center-of-mass coordinates, and x, y, z are half the
separation between the ions along the direction of principle
trap axes. When ωz < ðωx;ωyÞ, the ions crystallize along
the axial (z) direction at an equilibrium distance z0 from the
trap center. According to Eq. (1), the motion of the center-
of-mass modes is harmonic, but the out-of-phase modes are
coupled by the Coulomb interaction. For small axial
displacement u ¼ z − z0 and keeping only terms up to
the third order that contribute to the coupling between the x
and z modes, the potential energy becomes [15]

V ¼ mω2
rx2 þmω2

su2 þ
mω2

s

z0
x2uþ � � � :

Here, ωs¼
ffiffiffi
3

p
ωz;ωr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x−ω2

z

p
are the axial (“stretch”)

and radial (“rocking”) mode frequencies for the out-of-
phase motion. If the trap frequencies satisfy the condition
ωs ≃ 2ωr, we can apply the standard transformations
x̂¼ ðℏ=4mωrÞ1=2ðâþ â†Þ, û ¼ ðℏ=4mωsÞ1=2ðĉþ ĉ†Þ and
express the Hamiltonian in the rotating wave approxi-
mation as

Ĥ ¼ ℏωrâ†âþ ℏωsĉ†ĉþ ℏξðâ†2ĉþ â2ĉ†Þ; ð2Þ
where ĉ†; ĉ ðâ†; âÞ are the phonon creation and annihilation
operators in axial (radial) mode. The first two terms in
Eq. (2) describe harmonic motion in the axial (radial) mode
with the frequency ωsðωrÞ, and the third term couples these
modes with the coupling coefficient given by
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ξ ¼ 1

8z0

ffiffiffiffiffiffiffiffiffi
ℏω3

s

mω2
r

s
: ð3Þ

The coupling is nonlinear: one axial phonon is converted
into a pair of radial phonons and vice versa.
A schematic of the experimental setup is shown in

Fig. 1. Two 171Ybþ ions are confined in a four-rod linear
rf-Paul trap [20] with the single-ion secular frequencies
ðωx;ωy;ωzÞ=2π ¼ ð0.99; 0.90; 0.75Þ MHz. One of the ions
is optically pumped into a metastable 2F7=2 state by driving
the 2P1=2 → ð7=2; 2Þ3=2 transition (386.8 nm) with a femto-
second mode-locked pulsed laser and does not interact with
the laser beams during the experiment. The axial trapping
frequency is controlled by dc voltages applied to the end
caps, and the radial trapping potential is generated by a
30 MHz rf signal connected to diametrically opposite rods
in the x direction [Fig. 1(b)]. The radial trapping frequency
is actively stabilized using a pickup coil that is positioned
outside the vacuum chamber at a distance of around 5 cm
from the trap. The systematic drift of the radial trapping
frequency ωx=2π is less than 200 Hz=h and the drift is
negligible for the axial frequency.
To change the detuning δ ¼ ωs − 2ωr, the axial trapping

frequency remains fixed for all the experiments, while the
radial frequency is tuned by adjusting the dc voltages
applied to the x electrodes [see Fig. 1(b)] such that only the
radial mode along x interacts with the axial mode, while
the radial mode along y direction is far off resonance
(jδj=2π > 200 kHz). The radial mode frequency ωr can be
slowly changed between two values with the help of two
identical low-pass RC filters (LPF) that have a time

constant of 2 ms ≫ 2π=ξ to satisfy the adiabaticity
criterion, or rapidly changed with a time constant of
20 μs ≪ 2π=ξ using different pairs of filters. Both time
scales are much larger than one oscillation period of the ion
crystal, and we have experimentally verified that no
significant motional excitations are induced during these
frequency sweeps [21,22].
All experimental sequences start with the detuning

δ=2π ¼ 35 kHz, which is much larger than ξ=2π, effec-
tively decoupling two modes. Then, all the motional modes
of the two-ion crystal are initialized in the ground state by
Doppler cooling followed by sideband cooling [23]. For the
sideband cooling of both radial and axial modes of motion,
the R1-R2 (R2-R3) pair of Raman beams couples the
axial (radial) motional mode to the internal state of the ion
by driving frequency-comb-assisted Raman transitions
[20,23,24], as shown in Fig. 1(a). The Raman beams are
produced by a frequency-doubled mode-locked Ti:sapphire
laser (pulse duration 3 ps, repetition rate 76 MHz, central
wavelength 374 nm, and average power 250 mW). By
adjusting the Raman detuning, we may drive the “carrier”
(jgijni → jeijni), the “red" (jgijni→ jeijn−1i), or “blue”
(jgijni → jeijnþ 1i) sideband transitions. Here, the first
ket state corresponds to ion internal state, namely jgi≡
jS1=2;F¼ 0;mF ¼ 0i and jei≡ jS1=2;F¼ 1;mF ¼ 0i, and
the second to the state of its motional mode. The residual
population n̄ of all the motional modes after sideband
cooling is well below 0.05 phonons.
Moreover, when the R1 and R2 (R2 and R3) beams are

detuned from each other, the oscillating polarization
gradient of the resulting optical lattice provides a periodic
optical dipole force applied to the ion in the state
jai≡ jS1=2; F ¼ 1; mF ¼ 1i. The ion in state jgi does
not experience the force because its Stark shift is inde-
pendent of polarization [20].
To verify the nonlinearity of the coupling at the single-

phonon level, we initially populate the radial mode with
either one or two phonons. We then change dc voltages
applied to the rods of the trap, with time constants of
around 20 μs, to bring the detuning δ to zero. After time τ,
we bring the detuning back to its initial value and check for
the presence of phonons in the axial or radial mode. The
results are presented in Fig. 2.
We observe energy oscillations between the modes only

when the radial mode is initially prepared in the two-
phonon Fock state. The measured oscillation frequency
3.02� 0.02 kHz is compatible with 2

ffiffiffi
2

p
ξ=2π ¼ 2.96 kHz

predicted by Eq. (3). The reduced visibility of the oscil-
lation and the small deviation of the measured coupling
strength from theory can be attributed to two sources: the
nonperfect mapping of the motional state to the internal
state of the ion, and the deviation from the resonance
condition, compatible with the observed frequency drifts.
The observed mode coupling is analogous to the up-

and down-conversion of photons in nonlinear crystals.

FIG. 1. (a) Schematic of the experimental setup. One of the
Ybþ ions is in the S1=2 ground state and interacts with Doppler
cooling and Raman beams. The other ion is prepared in a dark
metastable 2F7=2 state and is sympathetically cooled. Three
Raman beams R1, R2, and R3 control the motional states along
the axial and radial directions. The red labels show the Raman
beam polarizations. The 7.0 G magnetic field B⃗ is parallel to the
R1 Raman beam. (b) Trap electrode configuration. The radial
trapping potential is generated by 30MHz rf signal Vrf and can be
fine tuned by adjusting offset voltages on the x electrodes with
two identical low-pass filters (LPF). Small additional dc voltage
applied to the y electrodes helps to compensate stray electric
fields.
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However, in contrast to the optical case, where the number
of pump photons required to produce one photon pair is
usually large [3], the coupling strength here is much higher
and this effect can be readily observed even at the single
quantum level.
In order to further quantify this coupling, we probe the

avoided crossing of the coupled modes of motion. Without
the coupling (ξ → 0), the bare energy eigenstates of the
Hamiltonian in Eq. (2) are degenerate and cross when
ωs ¼ 2ωr. The coupling mixes bare energy eigenstates of
the system such that the new eigenstates have nonzero
projection along both the axial and radial directions. This
results in the mode splitting that we measure in the vicinity
of the blue sideband of the axial mode as shown in Fig. 3.
If the detuning δ changes on a time scale much longer

than the inverse coupling rate 2π=ξ, the system remains in
the same energy eigenstate, leading to the adiabatic
evolution of motional states between the radial and axial
modes. In particular, the lowest energy eigenstate for
ωs > 2ωr, i.e., jnirj0ia, will evolve into the lowest energy
eigenstate for ωs < 2ωr. The latter eigenstate is j0irjn=2ia
for even n and j1irjðn − 1Þ=2ia for odd n. Therefore,
the adiabatic sweep enables direct parity measurement of
the ion motional state: the absence or presence of a phonon
in the radial mode after the sweep determines the parity of
the initial state of this mode. We detect the phonon by
mapping it onto the ion internal state and then determine
the expectation value of the parity operator P̂jnir ¼
ð−1Þnjnir as hP̂i ¼ ð1 − 2p1=ηÞ, where η is the phonon
mapping efficiency, and p1 is the probability to find the ion
in the “bright” internal state after mapping.
The direct parity measurement allows the reconstruction

of a quantum state’s Wigner function [26]. It was shown in

[27–29] that the Wigner function relates to the parity
operator by [30–33]

WðαÞ ¼ 2

π
Tr½Dð−αÞρDðαÞP̂�;

where ρ is the density matrix and DðαÞ is the displacement
operator. The state Dð−αÞρDðαÞ corresponds to a displace-
ment of the state ρ by the amount −α in phase space. The
displacement is done by applying a periodic force with
controlled phase and duration on resonance with the radial
mode of motion as described above [34]. After an adiabatic
sweep of the radial trapping frequency with a time constant
of 2 ms [see Fig. 1(b)], and mapping the radial phonon onto
the internal state of the ion, the value of theWigner function
can be determined as WðαÞ ¼ 2hP̂i=π.
The mapping of the phonon to the internal state of the ion

is achieved by applying a π pulse on the red sideband that
simultaneously removes one phonon from the motional
mode and changes the internal state of the ion. This
procedure is not perfect, and is limited by the residual
population of the other motional modes, power stability
of the Raman lasers, and the internal state detection
efficiency. To satisfy the condition WðαÞ → 0 for large
α, we determine the phonon mapping efficiency to be
η ¼ 0.86� 0.01. This value agrees well with the result of
an alternative method, where the radial mode is initialized
as a single-phonon Fock state and the probability of making
a spin flip is subsequently found to be η ¼ 0.89� 0.04.
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FIG. 2. Phonon state evolution in the axial (solid dots) and
radial (open circles) modes, where either one (blue) or two (red)
phonons are initially added to the radial mode. The sinusoidal fit
(red line) reveals the coupling rate to be 3.02� 0.02 kHz. The
error bars show 1σ statistical uncertainty. The oscillation’s
amplitude after about 10 ms is a factor of 0.39(7) compared to
the initial amplitude, limited by the coherence time of the
phonons in the radial mode [25].

FIG. 3. Avoided crossing observed for the axial mode after
sideband cooling. The left plot shows the probability p1 of the
transition from a “dark” jF ¼ 0; mF ¼ 0i to “bright” jF ¼ 1;
mF ¼ 0i state as a function of detuning δ from the resonance
condition, and Raman detuning. We extract the coupling strength
from the mode splitting at resonance, as shown on the right panel.
The splitting is measured to be 2.97� 0.03 kHz. Dots corre-
spond to the measured frequencies at the peak centers and the
solid lines show the eigenvalues of the Hamiltonian [Eq. (2)].

PRL 119, 150404 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

150404-3



The measurement protocol of the Wigner function was
tested on several quantum states, as described below. To
prepare the coherent states shown in Figs. 4(b) and 4(c), we
start with all the motional modes of the ion crystal cooled to
the ground state [Fig. 4(a)] and apply the oscillating dipole
force to coherently excite the ion motion [20,34].
To prepare the Schrödinger cat states [35] shown in

Figs. 4(d)–4(f), we initialize the S1=2 ion in the state ðjgi þ
jaiÞj0ir=

ffiffiffi
2

p
by the microwave π=2 pulse and then apply an

optical dipole force on resonance with the radial mode of
motion. This force is spin dependent and only displaces the
ion in the internal state jai [20]. After that, we swap the
internal states of the ions with a microwave π pulse and
apply the force with the phase shift ϕ to produce the
ðjgijαir þ jaijαeiϕirÞ=

ffiffiffi
2

p
state. Finally, we apply a micro-

wave �π=2 pulse to the internal state of the ion and arrive
at the state jgiðjαir � jαeiϕirÞ=2þ jaiðjαir ∓ jαeiϕirÞ=2.
We then detect the internal state of the ion using the
standard fluorescence technique [36]. If the ion is found in
the jgi internal state, the ion has scattered no photons and
the motional state of the ions is projected onto the
Schrödinger cat state ðjαir � jαeiϕirÞ=

ffiffiffi
2

p
. If the ion is

found in the bright state jai, the motional state is destroyed
by the photon recoil and we omit these cases.
The Fock states with phonon number n ¼ 1, 2, and 5

shown in Figs. 4(g)–4(i) are generated by the following
sequence: a π pulse on the blue sideband of the jgi → jei

transition that adds a phonon to the motional mode,
followed, if necessary, by another π pulse on the red
sideband that adds another phonon, or a π pulse on the
carrier transition that returns the ion to the initial internal
state. To generate the n-phonon Fock state jnir, n sideband
pulses are applied.
The discrepancy between the theory and experiment in

Fig. 4 is mainly due to anharmonicity of the radial motional
mode, which is induced by off-resonant coupling to the
vacuum state in the axial mode and causes an amplitude-
dependent rotation of the Wigner function about the origin.
Changes of the Wigner function due to other sources of the
experimental imperfections such as motional heating
(≤0.03), dephasing of the motional state (up to 0.1 for
the coherent and cat states), and intensity fluctuation of the
Raman beams (≤0.01) are smaller.
The nonlinear coupling between two modes demon-

strated in this Letter, and similar coupling between three
modes of the form ∼ab†c† þ a†bc that requires at least
three ion crystals [14], can be harnessed as a tool to study
quantum effects in thermodynamics [6,7], to simulate a
molecular Bose-Einstein condensate formation [9], to
mimic quantum information aspects of Hawking radiation
[8], implement hybrid quantum computations that involve
both discrete [3] and continuous variables [4,5], and may
provide sufficient nonlinearity for universal quantum com-
putations with continuous variables [5].
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FIG. 4. Wigner functions for different quantum states. (a)–(f) Wigner functions (from left to right) for the vacuum state, coherent states
jαir for α ¼ 0.87ð3Þ and 1.73(6), Schrödinger cat states ðjαir þ j − αirÞ=

ffiffiffi
2

p
, ðjαir − j − αirÞ=

ffiffiffi
2

p
, and ðjαir − jiαirÞ=

ffiffiffi
2

p
for

α ¼ 1.73ð6Þ. The top row corresponds to the experimental data, while the bottom row shows the calculated Wigner functions.
(g)–(i) Wigner functions of the Fock states jnir averaged over the phase of α with n ¼ 1, 2, and 5. The solid lines show the theoretical
prediction WðjαjÞ ¼ 2ð−1Þne−2jαj2Lnð4jαj2Þ=π; the points are experimentally measured values. The negative measured values of the
Wigner functions for the Schrödinger cat and Fock states demonstrate the nonclassical character of these states. Reconstruction of each
Wigner function requires up to 60 000 measurements and takes up to 3 h.
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Note added.—Recently, we became aware of parallel work
of Kienzler et al. [37], where a different method of the
Wigner function reconstruction based on the measurements
in a squeezed Fock basis was demonstrated.
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