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We study an ensemble of strongly coupled electrons under continuous microwave irradiation interacting
with a dissipative environment, a problem of relevance to the creation of highly polarized nonequilibrium
states in nuclear magnetic resonance. We analyze the stationary states of the dynamics, described within a
Lindblad master equation framework, at the mean-field approximation level. This approach allows us to
identify steady-state phase transitions between phases of high and low polarization controlled
by the distribution of disordered electronic interactions. We compare the mean-field predictions to
numerically exact simulations of small systems and find good agreement. Our study highlights the
possibility of observing collective phenomena, such as metastable states, phase transitions, and
critical behavior, in appropriately designed paramagnetic systems. These phenomena occur in a low-
temperature regime which is not theoretically tractable by conventional methods, e.g., the spin-temperature
approach.
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Introduction.—The control and detection of magnetiza-
tion arising from a polarized ensemble of unpaired electron
spins forms the basis of electron spin, or paramagnetic,
resonance (EPR), a powerful spectroscopy tool for studying
paramagnetic materials placed in a static external magnetic
field. The underpinning key principle for this technique is
the application of oscillating magnetic fields close to or at
the electronic Larmor frequency (usually in the microwave
regime) to generate nonequilibrium distributions of popu-
lations and coherences between quantum states that lead to
detectable signals [1–3]. The evolution of systems of
isolated or only weakly coupled paramagnetic centers under
the effect of these fields is well understood. A more
challenging problem is to predict the response of strongly
coupled electron ensembles to such perturbations, particu-
larly in samples in the solid state in which anisotropic
components of the electronic interactions are not averaged
out by thermal motion. Insight into the dynamics of strongly
coupled, microwave-driven electronic ensembles is also
needed in order to improve our understanding of dynamic
nuclear polarization (DNP), which is an out-of-equilibrium
technique to enhance the sensitivity of nuclear magnetic
resonance (NMR) applications by orders of magnitude (see,
e.g., Ref. [4–6]); in particular, this concerns the cross effect
and thermal mixing DNP mechanisms [7–13].
Herewe shed light on the nonequilibrium stationary states

of a strongly interacting electronic ensemble under con-
tinuous microwave driving and subject to dissipation to the
environment.Wemodel the dynamics of this system in terms
of a Markovian master equation and use a mean-field
approximation to compute the steady-state phase diagram.
This reveals phase transitions between states of high and low
electronic polarization as well as the emergence of a critical

point that displays Ising universality [14]. These features are
controlled by the distribution of the disordered electronic
spin-spin interactions. The uncoveredmean-field transitions
imply the emergence ofmetastable states and accompanying
intermittent dynamics [15–17], which we confirm numeri-
cally through simulations of small systems. Our results
suggest that under appropriate conditions collective phe-
nomena such as metastability, phase transitions, and critical
behavior should be observable in driven-dissipative, para-
magnetic systems. These predictions complement those of
conventional theoretical approaches, based, e.g., on the so-
called spin temperature which, due to their restriction to
certain parameter regimes, would only predict a homo-
genous quasiequilibrium state [10–12,18–23].
Model.—We model the evolution of the electron

system within the framework of a Markovian Lindblad
master equation. The density matrix ρ of a system con-
sisting of N microwave-driven electrons evolves according
to _ρ ¼ −i½H; ρ� þDρ. The Hamiltonian H at high static
magnetic field, in the rotating frame approximation, is
given by

H ¼
X
k

ðω1Skx þ ΔkSkzÞ þ 3
X
k<k0

Dkk0SkzSk0z

−
X
k<k0

D0
kk0Sk · Sk0 : ð1Þ

Here ω1 is the strength of the microwave field, Δk are
the offsets of the electron Larmor frequencies (detunings)
from the microwave carrier frequency, and Dkk0 , D0

kk0 are
coefficients that parameterize the strength of the anisotropic
and isotropic parts of the spin-spin dipolar and exchange
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interactions [3]. Depending on the degree of order and
symmetries within the sample structure, Dkk0 and D0

kk0 can
either be well defined (e.g., for crystals) or random (e.g., for
glasses). In amorphous materials, Δk are also distributed
due to the anisotropic interaction of the electrons with the
static field, leading to inhomogeneous broadening of the
EPR line [3,13,24].
Dissipative processes are modeled by the dissipator D

which describes single-spin relaxation and takes the form

D¼
X
k

½γ1þLðSkþÞþ γ1−LðSk−Þþ γ2LðSkzÞ�;

γ1� ¼R1

2
ð1∓pÞ; γ2¼ 2R2; p¼ tanh

ℏωS

2kBT
ð2Þ

where LðXÞρ≡ XρX† − fX†X; ρg=2 is the Lindblad
form of a dissipation operator [25]. The dissipation rates
depend on the longitudinal (R1) and transversal (R2)
relaxation rates of the electron spins as well as the thermal
polarization p ∈ ½0; 1�, which depends on the average
electron Larmor frequency ωS and the temperature T.
Note that throughout this Letter many observables will
be expressed through p and thereby acquire their temper-
ature dependence. For typical experimental conditions
(W band, ωS ∼ 100 GHz, sample temperature between
T ∼ 0 K and T ∼ 100 K) p is in the region of 1–0.01.
Mean field in the absence of disorder.—In order to

obtain a basic understanding of the phase structure of the
driven electron system, let us first disregard any dispersion
in the frequency offsets and interactions, by setting Δk ¼ Δ
and Dkk0 ¼ D=ðN − 1Þ. In the nondisordered case, the last
term of Eq. (1) commutes with the rest of the Hamiltonian
and does not influence the bulk polarization dynamics.
Therefore, we can neglect it, leading to the mean-field
Hamiltonian

H̄ ¼
X
k

ðω1Skx þ ΔSkzÞ þ
3D

N − 1

X
k<k0

SkzSk0z: ð3Þ

We now compute the stationary average bulk polariza-
tion pz ¼ −2

P
TrðSkzρssÞ=N, which serves as an order

parameter for classifying the steady state ρss and coincides
(due to the system homogeneity) with the steady-state
polarization of the individual spins. To obtain the mean-
field equation, we consider the projection Hk ¼ ω1Skx þ
Δ̄kSkz of H̄ onto the subspace of an arbitrary spin k. Here
Δ̄k ¼ Δþ ½3D=ðN − 1Þ�Pk0≠kSk0z is the effective energy
shift or offset term experienced by the spin that accounts for
the frequency offset and interactions with other spins
k0 ≠ k, which introduces collective effects. This effective
(collective) energy shift takes discrete values

Δ̄k ∈ δðqÞ ¼ Δþ 3D
N − 1

�
q −

N − 1

2

�
ð4Þ

where q ¼ 0;…; N − 1 is the number of spins k0 ≠ k in the
up state. For each valueq, the steady-state polarizationp0

zðqÞ
is given by the single-spin formula [see Supplemental
Material (SM) [26] ]

p0
zðqÞ ¼ p

�
1 −

ηω2
1

δ20 þ δ2ðqÞ
�
; ð5Þ

where δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ ηω2

1

p
and η ¼ R2=R1 is the ratio of the

electron spin relaxation rates. Averaging Eq. (5) over all
values of q (thus taking into account all possible orientations
of the surrounding spins) finally yields the equation for the
relative steady-state polarization p̄z ¼ pz=p,

p̄z ¼ fðΔ; D; p̄zÞ≡
XN−1

q¼0

Pðq; pp̄zÞp0
zðqÞ=p: ð6Þ

Here Pðq;pzÞ¼ðN−1=qÞf½ð1−pzÞqð1þpzÞN−1−q�=2N−1g
is the probability of having q up spins and N − q − 1 down
spins. Since the right-hand side depends on p̄z, Eq. (6)
should be regarded as a self-consistency condition.Note also
that Eq. (6) depends on Δ, D, and temperature (via the
thermal polarization p).
Low- and high-temperature regime.—The relative

polarization is bounded (jp̄zj ≤ 1); thus, fðp̄zÞ defines a
continuous map of the unit interval p̄z ∈ ½0; 1� to itself.
Therefore, by virtue of the Brouwer fixed-point theorem
[30], Eq. (6) always has at least one solution. We find that
the solution is unique for small values of p corresponding
to high temperatures and small numbers of spins N (see
SM [26]).
For small values of N we can compare the results of the

mean-field treatment to the exact solution of the quantum
master equation given by the dissipator (2) and Hamiltonian
(3). To this end we show in Fig. 1(a) the steady-state
polarization spectrum, i.e., the dependence of the bulk
polarization p̄z on the average microwave offset Δ, for
three typical sets of parameters forN ¼ 4. Generally a good
agreement is obtained. The observed spectra have N
Lorentzian peaks occurring at Δ ¼ 3D½1=2 − q=ðN − 1Þ�,
q ¼ 0; 1;…; N − 1, with a half-width of δ0. The center
Δ ¼ 0 of the spectrum corresponds to q ∼ q0 ≡ ðN − 1Þ=2.
The mean of the binomial distribution Pðq; pp̄zÞ where the
maximal saturation is given by q̄ ¼ ðN − 1Þð1 − pp̄zÞ=2.
Here q̄ is close to q0 for small p and tends to shift from q0
with increasing p. Hence, the intensities of the peaks are
symmetric with respect to the center of the spectrum at high
temperatures (p ∼ 0) and undergo a shift from the center at
low temperatures (p ∼ 1), with the relation between p and
the temperature defined through Eq. (2).
Multistability and phase transitions.—The situation

qualitatively changes when entering the regime of low
temperatures, i.e., large thermal polarization p ∼ 1, and high
numbers of spins N ≫ 1. In this case (see SM [26]) Eq. (6)
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can feature more than one solution. In Fig. 1(b) we show the
phase diagram given by the number of solutions of Eq. (6) in
terms of the scaled offset and interaction parameters
a ¼ Δ=ω1

ffiffiffi
η

p
, b ¼ 3D=ω1

ffiffiffi
η

p
. Figure 1(b) features a multi-

stability regionwhere three solutions coexist (gray) separated
from the regions with a unique solution (brown) by two
spinodal lines. The point at which the coexistence region
vanishes defines a critical pointG, the nature of which can be
characterized by analyzing the scaling behavior of the
polarization p̄z in two directions that are singled out: one
is given by the curve that is tangent to both spinodal lines [see
Fig. 1(b)], where we find jp̄z − p̄critj ∼ y1=2, with p̄crit being
the value of p̄z at the critical point. Along the perpendicular
directionwe find jp̄z − p̄critj ∼ x1=3 [27]. These are themean-
field scalings of the Ising universality class [14,31]. In other
words, the directiony can be thought of as being analogous to
temperature in the Ising model, where below the critical
temperature, i.e., upon crossing the critical point, two
ferromagnetic states emerge. Within this analogy the
perpendicular direction x can be regarded as magnetic field
(seeSM[26] for further details). Similar phase diagramshave
recently been found in other contexts, e.g., for open driven
gases of strongly interacting Rydberg atoms [14,32–34],
laser-polarized quantum systems [35], or certain classes of
dissipative Ising models [16,17,29,36].
The behavior of the steady-state polarization p̄z upon

crossing the multistable region is shown in Fig. 1(c).
Solutions with small p̄z ∼ 0 correspond to nonthermal
quasisaturated equilibrium states. States with large values
p̄z ∼ 1 are unsaturated quasithermal equilibria. On crossing
the spinodal curve 1 from large negative values of a, the
unique stable quasithermal steady state continues to exist
but two other steady-state solutions appear: a stable
quasisaturated one and an unstable intermediate one, as
shown in Fig. 1(c). Conversely, on crossing curve 2 towards
large negative values of a, the unique stable quasithermal

steady state continues to exist but two other steady-state
emerge, a stable and an unstable one. Note that the
occurrence of multiple steady-state solutions is an artifact
of the mean-field approximation which can be interpreted
as the emergence of metastable states [16] near first-order
phase transitions. Experimentally those may manifest
through hysteretic behavior, as recently shown in [32–34].
We will return to this point further below.
Disordered spin-spin interactions and augmented mean

field.—The results so far indicate possible phase transitions
in the polarization of the electron system controlled by the
frequency offset Δ and the average interaction strength D.
However, typical sample materials are not single crystals
and electrons are arranged randomly, such that the average
interaction experienced by an electron is close to zero [13].
In order to take this into account we need an augmented
mean-field description which accounts for a distribution in
the coupling strengths.
Note that when the disorder in either the offsetsΔk or the

interactions Dkk0 is large enough, unitary dynamics with
Hamiltonian (1) is expected to undergo many-body locali-
zation (MBL) [37]. In this case spatial fluctuations in the
long-time state can be significant and determined by the
disorder and the initial state, which raises the question of
the appropriateness of mean field. However, in the presence
of dissipation, cf. Eq. (2), the nonergodic MBL phase is
unstable and the stationary state becomes delocalized
[38–40]. This suggests that the mean-field analysis is still
appropriate as long as only static (long-time properties) are
investigated. The approach to stationarity may nevertheless
display a transient nonergodic effect. For other possible
connections between MBL and DNP see [23,41].
For the sake of simplicity we assume that the interactions

D follow a Gaussian distribution, χðDÞ ¼ expð−D2=D2
0Þ=

ð ffiffiffi
π

p
D0Þ, with zero mean and standard deviation D0. The

offset frequency Δ may also be disordered (e.g., from the g
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FIG. 1. (a) Steady-state polarization spectra p̄zðΔÞ obtained by the mean-field formula (6) (solid lines) and the numerically exact
solution (dashed lines) for N ¼ 4, D ¼ 10 MHz, R2 ¼ 106 s−1, and different temperature and microwave parameters: p ¼ 0.11,
ω1 ¼ 75 kHz, R1 ¼ 103 s−1 (red); p ¼ 0.55, ω1 ¼ 12 kHz, R1 ¼ 10 s−1 (green); p ¼ 0.99, ω1 ¼ 7 kHz, R1 ¼ 1 s−1 (blue). (b) Phase
diagram obtained from Eq. (6) in the ða; bÞ plane. The diagram features regions of unique (brown) and multiple (gray) solutions and
displays a (cusp) critical point G at p ¼ 0.99, ω1 ¼ R2 ¼ 105, and R1 ¼ 1 s−1 (for N ¼ 150 electrons). (c) Structure of the solutions
along the cut b ¼ 3.75 (D ¼ 6.3 MHz) through the region with a multistable region featuring three solutions. (d) Phase diagram
obtained from Eq. (7) in the ða0; b0Þ plane featuring regions of unique and multiple solutions similar to that in panel (b) and a critical
point G0 belonging to the same universality class as G (see text for details). The dark gray region illustrates the impact of disorder in the
frequency offsets Δk (inhomogeneous broadening) on the multistability region. The strength of the inhomogeneous broadening is
parameterized by c (see SM [26] for details).
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anisotropy and hyperfine interactions with nuclei [3,24]),
but we neglect that effect for now. With disorder Eq. (6)
generalizes to

p̄z ¼
Z þ∞

−∞
f0ðΔ; D; p̄zÞχðDÞdD: ð7Þ

To obtain this expression we averaged over χðDÞ and
additionally exploited the fact that in the thermodynamic
limit (N ≫ 1) the function f on the right-hand side of
Eq. (6) coincides with the function f0 ¼ p0

zðq̄Þ=p, where
q̄ ¼ ðN − 1Þð1 − pp̄zÞ=2 is the mean of the binomial dis-
tribution Pðq; pp̄zÞ. This gives f0 ¼ 1 − ηω2

1=ðδ20 þ δ2Þ
with δ ¼ Δ − 3Dpp̄z=2 (see SM [26]). The mean-field
phase diagram resulting from Eq. (7) is displayed in
Fig. 1(d) as a function of the dimensionless parameters
a0 ¼ Δ0=ω1

ffiffiffi
η

p
(Δ0 is the average offset, equal to Δ in the

case considered here) and b0 ¼ 3pD0=2ω1

ffiffiffi
η

p
. We assume

that the strength of the microwave field is large, ω2
1η ≫ R2

2,
meaning that the electron system is fully saturated in the
absence of spin-spin coupling (in which case the phase
transitions observed are most pronounced). The structure is
similar to that of Fig. 1(b). We observe regions with one and
three solutions as well as spinodal lines forming a cusp at a
critical point G0. The scaling properties at this critical point
are again those of mean-field Ising universality. Although
equal to the nondisordered case, the important point is that
the underlying mechanism is different. In the presence of
disorder the phase transition is controlled by thewidth of the
distribution of the disorder strengths (D0 ∝ b0) rather than
the average interaction strength, which is in fact zero.
Fluctuations and numerical simulations.—The mean-

field treatment above is of course not exact. Whether the
predicted qualitative phase structure survives away from
mean field depends on the effect of fluctuations [29,36]. As
shown in [15–17], phase coexistence at the mean-field
level can be an indication—away from the thermodynamic
limit [29] of the existence of long-lived metastable (rather

than stationary) phases. These competing phases come with
an intermittent dynamics of slow switching between them
and a significantly longer relaxation time. While the value
of the polarization will fluctuate over time within these
phases, it will take a distinct average value in each phase.
We now show that this is indeed the case by investigating
the numerically exact polarization dynamics for a small
system, Eqs. (1) and (2), by means of quantum jump
Monte Carlo simulations [28]. In particular we monitor
the time dependence of the polarization pzðtÞ ¼
−ð2=NÞPkTr½SkzρðtÞ� for a variety of values of a0 and b0.
For the set of parameters we consider, multiple disorder
realizations of the dipolar coupling fDkk0 g, withD0

kk0 ¼Dkk0 ,
are taken. These are independent and identically distributed,
sampled from a Gaussian distribution with variance defined
by b0 (see SM [26] for details).
Fluctuations due to metastability can be quantified by the

probability distribution of the time-integrated polarization,
Pz ¼ ð1=tÞ R t

0 pzðt0Þdt0. As t is increased in systems with-
out metastability we expect a contracting distribution with a
single, approximately Gaussian, peak around the stationary
state value. In the presence of metastability we instead
expect a broadened, non-Gaussian distribution. In particu-
lar, for t on the order of metastable phase lifetimes one
expects multiple peaks located near the average values of
the different metastable phases. While we lack the distinct
metastable phases due to small sizes and disorder, for t
on the order of relaxation time, Figs. 2(a)–2(c) show an
intermediate regime in which the disorder-averaged
distribution is strongly broadened and non-Gaussian. In
Fig. 2(d) we plot the variance as a function of b0 for several
values of a0, cf. Fig. 1(d). We see a peak at intermediate
values of b0 for all curves, which is consistent with the
expectation of a phase transition in the thermodynamic limit.
Conclusions.—Our results demonstrate that cooperative

behavior in strongly interacting ensembles of microwave-
driven electrons—a situation of relevance to DNP in

FIG. 2. Numerical simulations and fluctuations. All results in this figure are produced for parameters ω1 ¼ 105 Hz, R1 ¼ 1 s−1,
R2 ¼ 105 s−1, p ¼ 0.99, and N ¼ 8, and averaged over 10 disorder realizations. (a)–(c) Discrete approximations of the probability
density (dark shaded area) for the observable Pz for three sets of parameters, such that

R
πðPzÞdPz ¼ 1 over the range shown. The light-

colored curves represent the densities for some individual disorders, divided by the number of disorder realizations considered so that
their addition (rather than their average) would equal the full probability density. This is done to better represent the contribution each
disorder realization makes to the distribution. Panel (b) shows a strongly broadened distribution signaling enhanced fluctuations. This is
consistent with the presence of metastable states that are expected from the mean-field analysis. (d) The variance of the time integrated
observable Pz for varying b0, with the fixed a0 value indicated by the legend in the top right.
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NMR—can give rise to a nontrivial phase structure in the
stationary state of these systems. While the calculated
phase diagram is mean field in origin, our simulations show
that—even for finite systems—dynamics will be correlated
and intermittent, related to the coexistence of metastable
states. In the future, further insights could be gained by
using the augmented mean-field methods for open quantum
systems [42]. The experimental demonstration of the
predicted phenomena would ideally require a paramagnetic
sample with minimal inhomogeneous broadening, kept at
cryogenic temperatures and high magnetic field.
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