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Using molecular dynamics simulation of a standard coarse-grained polymer glass model, we investigate
by means of the stress-fluctuation formalism the shear modulus μ as a function of temperature T and
sampling time Δt. While the ensemble-averaged modulus μðTÞ is found to decrease continuously for all Δt
sampled, its standard deviation δμðTÞ is nonmonotonic, with a striking peak at the glass transition.
Confirming the effective time-translational invariance of our systems, μðΔtÞ can be understood using a
weighted integral over the shear-stress relaxation modulus GðtÞ. While the crossover of μðTÞ gets sharper
with an increasing Δt, the peak of δμðTÞ becomes more singular. It is thus elusive to predict the modulus of
a single configuration at the glass transition.
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Introduction.—The shear modulus μ is the central,
mechanically directly accessible order parameter character-
izing the transition from the liquid-sol (μ ¼ 0) to the solid-
gel state (μ > 0) [1–5]. Since the shear modulus μðTÞ of
crystalline solids vanishes discontinuously at the melting
point with an increasing temperature T [6], this begs the
question of the behavior of μðTÞ for amorphous solids near
the glass transition temperature Tg [6–16]. Two qualita-
tively different scenarios have been put forward, being in
favor either of a continuous (cusplike) transition [6–10] or
of a discontinuous jump at Tg [11–16]. The jump singu-
larity is a result of mean-field theories [11,16,17], which
find the energy barriers for complete structural relaxation to
diverge at Tg so that liquidlike flow stops. However, in
experimental or simulated glass formers, the barriers do not
diverge abruptly. Such non-mean-field effects are expected
to smear out the sharp transition [16]. Another line of recent
research has focused on the elastic properties deep in the
glass [18–20]. At T ≪ Tg a transition in the solid is found,
where multiple particle arrangements occur as different
competing glassy states. This so-called Gardner transition
is thus accompanied by strong fluctuations of μ from one
glass state to the other [19,20]. Interestingly, strong
fluctuations of μ were also observed in amorphous self-
assembled networks [21] (a model for vitrimers [22]). The
results of Refs. [19–21] beg the question of whether the
emergence of shear rigidity at the glass transition is also
accompanied by strong fluctuations of μ. Here, we address
both questions by means of large-scale molecular dynamics
(MD) [23] simulations of a standard model for glassy
polymers [24–28]. Details about the model, the quench
protocol, and the measured observables may be found in
the Supplemental Material (SM) [29]. Lennard-Jones units
[23] are used below.
Key findings.—Following the pioneering work by

Barrat et al. [7] and many recent numerical studies
[6,10,20,27,28,30–32], we use the stress-fluctuation

formalism [33–37] to determine the shear modulus. Our
key findings for μ and its standard deviation δμ, obtained as
a function of T for a broad range of sampling times Δt, are
summarized in Fig. 1. Although μðTÞ remains always
continuous, it becomes systematically more steplike with
an increasing Δt. At variance with the monotonic modulus
μðTÞ, its standard deviation δμðTÞ is nonmonotonic with a
remarkable peak near Tg ≈ 0.38. (As explained in the SM
[29], Tg is defined here by means of a Δt-independent
dilatometric criterion during the initial continuous temper-
ature quench [6,27].) The peak increases with Δt, becom-
ing about a third of the drop of μðTÞ between T ¼ 0.34 and
T ¼ 0.38 for Δt ¼ 105. The liquid-solid transition is thus

FIG. 1. Key findings as a function of temperature T. The
vertical dashed lines indicate the glass transition temperature
Tg ≈ 0.38. (Main panel) Shear modulus μðTÞ for different
sampling times Δt showing that the transition becomes more
and more steplike with an increasing Δt. (Inset) Corresponding
standard deviation δμðTÞ showing a peak at T ≈ Tg which
becomes sharper with an increasing Δt. Also included are the
shear-stress relaxation modulus GðtÞ and its standard deviation
δGðtÞ taken at a time t ¼ 104 (the bold solid lines).
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accompanied by strong fluctuations between different glass
configurations. We corroborate these results below.
Specifically, we shall trace back the observed Δt depend-
ence of μ to the time dependence of the shear-stress
relaxation modulus GðtÞ [4].
Time series.—Our m ¼ 100 independently quenched

configurations contain 3072 chains of length N ¼ 4. A
vanishing normal pressure (P ¼ 0) is imposed for all T’s.
Having reached a specific temperature and after tempering
over Δtmax ¼ 105, we perform production runs again over
Δtmax with entries made each velocity-Verlet sweep. Of
importance here are the instantaneous shear stress τ̂ and the
instantaneous “affine shear modulus” μ̂A. As mentioned in
Sec. II of the SM [29], τ̂ is the first functional derivative of
the Hamiltonian with respect to an imposed infinitesimal
canonical and affine shear transformation and μ̂A the corre-
sponding second functional derivative [10,21,35–38]. The
stored time series are used to compute for a given configu-
ration and shear plane various time averages [23] (marked by
horizontal bars) over sampling times Δt ≤ Δtmax:

μ̄A ≡ μ̂A; ð1Þ

μ̄F ≡ μ̄0 − μ̄1; with μ̄0 ≡ βV τ̂2; μ̄1 ≡ βV ¯̂τ2; ð2Þ

μ̄≡ μ̄A − μ̄F ≡ ðμ̄A − μ̄0Þ þ μ̄1; ð3Þ

with β ¼ 1=T being the inverse temperature and V the
volume of each configuration.
Expectation values.—The corresponding ensemble aver-

ages μA ≡ hμ̄Ai, μ0 ≡ hμ̄0i, μ1 ≡ hμ̄1i, μF ≡ hμ̄Fi, and μ≡
hμ̄i are then obtained by averaging over the m configura-
tions and the three shear planes [39]. We have already
presented the modulus μðTÞ in the main panel of Fig. 1
using a linear representation. Figure 2 presents μðTÞ and its
various contributions for Δt ¼ Δtmax ¼ 105 using half-
logarithmic coordinates. As emphasized above, although
μ ¼ μA − μF increases rapidly below Tg, the data remain
continuous, in line with findings reported for colloidal glass
formers [6,7,10] that also use the stress-fluctuation formula.
As one expects, μ ¼ μ1 ¼ 0 in the liquid limit above Tg,
and hence μF ¼ μ0 ¼ μA [10,28,35]. At variance to this,
μF < μA below Tg; i.e., the shear-stress fluctuations do not
have sufficient time to fully explore the phase space.
In agreement with Lutsko [34] and more recent studies
[6,10,30,31], μF does not vanish for T → 0; i.e., μA is
only an upper bound of μ ¼ μA − μF. We emphasize
that while μF ¼ μ0 − μ1 is more or less constant below
Tg, its contributions μ0 and μ1 increase rapidly with a
decreasing T.
Ensemble fluctuations.—To also characterize the fluctu-

ations between different configurations, we take for various
properties in addition to the second moment over the
ensemble. As already seen in the inset of Fig. 1, we thus
compute, e.g., the standard deviation of the shear modulus

δμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hμ̄2i − hμ̄i2

p
[39]. δμ is presented together with the

corresponding standard deviations δμA, δμ0, δμ1, and δμF in
Fig. 3. As can be seen, δμA is negligible and δμ ≈ δμF for
all T’s. In the high-T regime, we find that δμ ≈ δμ0, while
δμ1 ≈ μ1 vanishes much more rapidly. In the opposite glass
limit, δμ ≈ δμF becomes orders of magnitude smaller than
δμ0 ≈ δμ1 [28]. The contributions μ̄0 and μ̄1 of the differ-
ence μ̄F ¼ μ̄0 − μ̄1 thus must be strongly correlated, as one
verifies using the corresponding correlation coefficient.
This is yet another manifestation of the strong frozen shear
stresses which are generated in each configuration while
quenching the systems through the glass transition.

FIG. 2. First moments μA, μ0, μ1, μF, and μ vs temperature T
using a half-logarithmic representation. The data are obtained for
Δt¼Δtmax¼105. With decreasing temperature, μ ≈ μ1 increases
rapidly at Tg, but it remains continuous. Interestingly, μ0 deviates
from μA and μ1 from μ below Tg.

FIG. 3. Standard deviations δμA, δμ0, δμ1, δμF, and δμ as a
function of T:δμA is found to be small, and δμ ≈ δμF for all T’s.
Below Tg, the standard deviations δμ1 and δμ0 become rapidly
similar and orders of magnitude larger than δμF. This confirms
the presence of strong frozen shear stresses.
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Δt dependence.—We return now to the sampling time
dependence shown in Fig. 1. As expected from crystalline
and amorphous solids [6,10] and permanent [10,38] and
transient [21] elastic networks, the expectation values of the
contributions μA and μ0 to μ are strictlyΔt independent (not
shown). This can be traced back to the fact that their time
and ensemble averages commute [38,40]. This is strikingly
different for μ1, μF, and μ, for which this commutation
relation does not hold. As shown in Fig. 4, we focus here
on the Δt dependence of μðΔtÞ ¼ ðμA − μ0Þ þ μ1ðΔtÞ.
Covering a broad range of temperatures, we use subsets
of length Δt of the total trajectories of length Δtmax stored.
It is seen that μðΔtÞ decreases both monotonically and
continuously with Δt. The figure reveals that μðΔt;TÞ
decreases also monotonically and continuously with T. A
glance at Fig. 4 shows that one expects the transition of
μðTÞ to get shifted to a lower T and to become more
steplike with an increasing Δt, in agreement with Fig. 1.
[Note that μðΔtÞ increases for T → 0, while its decay slows
down.] It is, however, impossible to reconcile the data with
a jump singularity at a finite Δt and T. Nor is it possible to
achieve a reasonable data collapse by shifting the data.
Connection between μðΔtÞ and GðtÞ.—The systematic

sampling time dependence of μðΔtÞ shown in Figs. 1 and 4
can be understood from the generic sampling time depend-
ence of time-averaged fluctuations [41]. Assuming time-
translational invariance μðΔtÞmay be written as a weighted
average [21,28,35–38],

μðΔtÞ ¼ 2

Δt2

Z
Δt

0

ðΔt − tÞGðtÞdt; ð4Þ

over the shear-relaxation modulus GðtÞ [29]. As shown in
Fig. 5, we have computed GðtÞ directly by means of the
fluctuation-dissipation relation appropriate for canonical
ensembles with quenched or sluggish shear stresses
[28,29,35,38]. Having thus characterized the relaxation
modulus GðtÞ, the numerical sum corresponding to
Eq. (4) yields the thin dashed-dotted lines indicated in
Fig. 4. Being identical with the stress-fluctuation formula
μ ¼ μA − μF for all T’s, this confirms the assumed time-
translational invariance. The Δt dependence of μ, μ1, and
μF is thus simply due to the upper boundary Δt used to
average GðtÞ. As one expects from Eq. (4) [29], the
functional forms of μðΔtÞ and GðtÞ are rather similar,
especially at low T. Fixing a time t—say, t ¼ 104, as
indicated by the vertical dashed line in Fig. 5—allows us to
characterize the temperature dependence of the relaxation
modulus GðtÞ and its standard deviations δGðtÞ (the bold
solid lines in Fig. 1). Consistent with Eq. (4), the behavior
found is similar to that of μðTÞ and δμðTÞ.
Distribution of μ̄.—The striking peak of δμ below Tg

seen in Fig. 1 begs for a more detailed characterization of
the distribution pðμ̄;T;ΔtÞ of the time-averaged shear
modulus μ̄. Focusing on our largest sampling time
Δtmax, the main panel of Fig. 6 presents normalized
histograms obtained using 3 ×m ¼ 300 measurements.
We emphasize that the histograms are unimodal for all
T’s and Δt’s [42]. The T dependence of μ and δμ below Tg

seen in Fig. 1 is thus not due to, e.g., the superposition of
two configuration populations representing solid states
with a finite μ̄ and liquid states with μ̄ ≈ 0. The maximum
μmax of the (unimodal) distribution systematically shifts to
higher values below Tg, in agreement with its first moment
μ (Fig. 1), while the distributions become systematically
broader and more lopsided; i.e., liquidlike configurations
with a small μ̄ remain relevant. The increase of δμ with

FIG. 4. Shear modulus μ as a function of sampling time Δt for a
broad range of T ’s, as indicated in the figure. μðΔtÞ decreases
continuously with Δt. Note that a smaller temperature increment
ΔT ¼ 0.01 is used around Tg (the solid lines), where μðΔt;TÞ
changes much more rapidly with T. The dashed-dotted lines are
obtained using Eq. (4) by integrating the directly measured shear-
stress relaxation modulus GðtÞ. The vertical lines mark the
sampling times used in Fig. 1.

FIG. 5. Stress relaxation modulusGðtÞ for a broad range of T ’s.
The data are rather similar to the shear modulus μðΔtÞ presented
in Fig. 4. The dashed vertical line marks the time t ¼ 104 used for
GðtÞ and δGðtÞ in Fig. 1.
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sampling time Δt seen in the inset of Fig. 1 is due to the
broadening of pðμ̄Þ caused by the growing weight of small-
μ̄ configurations (not shown). For even smaller temper-
atures where T ≪ Tg, the distributions get again more
focused around their maxima μmax (as expected from Fig. 1)
and less lopsided. That the large standard deviations and the
asymmetry of the distributions are related is demonstrated
by comparing the first moment μ of the distribution, its
median μmed, and its maximum μmax. One confirms that
0 < μmed − μ < μmax − μ below Tg for all Δt’s. As seen
from the inset of Fig. 6, μmed − μ has a peak similar to δμ
becoming sharper with an increasing Δt.
Summary.—We investigated by means of MD simula-

tions a coarse-grained model for polymer glasses character-
izing its shear modulus μ using the stress-fluctuation
formalism. The observed Δt dependence of μ (Fig. 1)
and its contributions μ1 and μF can be traced back to the
finite time (time-averaged) stress fluctuations’ need to
explore the phase space which is perfectly described
(Fig. 4) by the weighted integral over the shear-stress
relaxation modulus GðtÞ [Eq. (4)]. The liquid-solid tran-
sition characterized by the ensemble-averaged μðTÞ is
continuous for all sampling times Δt, but it becomes
sharper—and thus better defined—with an increasing Δt
(Fig. 1). However, while the transition gets more steplike
on average, increasingly strong fluctuations between dif-
ferent configurations underly the transition. The broad and
lopsided distribution pðμ̄Þ below Tg makes the prediction
of the modulus μ̄ of a single configuration elusive (Fig. 6).
Beyond the current study.—While μ and its contributions

μA, μF, μ0, and μ1 do not depend on the system size [29],
this is more intricate for the corresponding standard
deviations and must be addressed in the future following
Ref. [20]. Recent work on self-assembled networks [21]
suggests that δμ≈δμF∼1=

ffiffiffiffi
V

p
for T≪Tg (self-averaging),

while δμ ≈ δμF ∼ V0 around Tg (lack of self-averaging). In
the latter limit, long-range elastically interacting activated
events are expected to dominate the plastic reorganizations
of the particle contacts [43]. From a broader vantage point,
it is no surprise that the lifting of the permutation invariance
of the liquid state below Tg [5] should lead to strong
fluctuations between different configurations. The obser-
vation of strong frozen-in shear stresses (Figs. 2 and 3) is
thus merely a demonstration of the broken symmetry.
Analysis tools need to account for these frozen zero-
wave-vector stresses, and theoretical approaches neglecting
them are bound to miss the heart of the problem.
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