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We show that carbon nanotubes (CNT) can be driven through a topological phase transition using either
strain or a magnetic field. This can naturally lead to Jackiw-Rebbi soliton states carrying fractionalized
charges, similar to those found in a domain wall in the Su-Schrieffer-Heeger model, in a setup with a
spatially inhomogeneous strain and an axial field. Two types of fractionalized states can be formed at the
interface between regions with different strain: a spin-charge separated state with integer charge and spin
zero (or zero charge and spin�ℏ=2), and a state with charge�e=2 and spin�ℏ=4. The latter state requires
spin-orbit coupling in the CNT. We show that in our setup, the precise quantization of the fractionalized
interface charges is a consequence of the symmetry of the CNT under a combination of a spatial rotation by
π and time reversal.
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Introduction.—Charge fractionalization is one of the
most fascinating manifestations of emergent behavior in
condensed matter physics. This phenomenon results from a
subtle interplay of quantum many-body physics and top-
ology. Although fractional charges were theoretically
predicted to arise in different settings, only a handful of
confirmed experimental realizations exist, the most promi-
nent being fractional charges in quantum Hall states [1–4].
The earliest theoretical prediction of charge fractionali-

zation was given by Jackiw and Rebbi [5] in the context of
relativistic field theory. They showed that a one-dimensional
(1D)Dirac equationwith a spatially varyingmass has a zero-
energy eigenstate whenever the mass changes sign. This is a
“half fermion” state, which carries a fermion charge of e=2
relative to the background filled Dirac sea. The solid state
equivalent was suggested by Su, Schrieffer, and Heeger
(SSH) [6,7] who, motivated by the structure of polyacety-
lene, considered a 1D dimerized chain of electrons (see also
Refs. [8,9]). In their model, a Jakiw-Rebbi soliton carrying
fractionalized quantum numbers [10] emerges at a domain
wall between the two dimerization states. The Jakiw-Rebbi
soliton state plays an important role in the theory of
topological insulators [11,12]. Jakiw-Rebbi zero modes
and geometric Zak phases [13] were observed in photonic
and cold atomic systems [14–16]. However, a direct obser-
vation of a Jackiw-Rebbi (JR) soliton state and its fractional
charge in solid state systems is lacking.
In this work, we propose a simple, robust experiment

realizing JR fractionally charged states in carbon nanotubes
(CNT). The suggested experimental setup [Fig. 1(a)]
consists of a suspended metallic CNT touching a wedge-
shaped pillar near its middle. A metallic CNT has a 1D
Dirac electronic dispersion [17]. However, intrinsic tension
shifts the quantization condition of the perpendicular

momentum away from the Dirac point, opening a small
gap (∼1–100 meV) [18,19]. By applying a magnetic field
parallel to the CNT axis it is possible to shift the
quantization condition such that the gap closes and reopens
after crossing the Dirac point [20–22]. Since the strain on

FIG. 1. (a) The proposed system. A suspended CNT is placed
on a wedge-shaped pillar, causing the strain of the CNT at the left
side(red) to be different then at the right side(blue). An axial
magnetic field is applied. At a certain range of field, a Jackiw-
Rebbi soliton state with a fractionalized charge is formed in the
middle region. (b) The energy dispersion of the CNT can be
understood as a 1D cut through the dispersion of the honeycomb
lattice. The position of the cut depends on strain and magnetic
field. Thus, as the field is varied, one of the CNT sub-bands may
cross through the Dirac point, changing the sign of its mass term.
(c) Predicted charge in the middle third of the CNT, as a function
of magnetic field, B, and chemical potential, μ. (See text for
details of the simulation.) In a range of fields and chemical
potentials, the charge is �e=2; at higher fields, a spin-charge
separated state with charge �e and spin zero is formed.
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both sides of the wedge is generically different, the gap in
these two regions closes at different fields. Thus, there is a
range of magnetic fields where the Dirac masses in the two
regions have an opposite sign [Fig. 1(b)]. In this range, a
robust SSH-like soliton state carrying a fractionalized
charge emerges at the interface.
Figure 1(c) shows the predicted charge stability diagram.

The color map represents the charge integrated over a region
around the wedge, vs the axial magnetic field, B, and
chemical potential, μ. For μ near the middle of the CNT’s
semiconducting gap, there are three regions of B: B < Bc↓,
where the charge is zero [Bc↓ is the field of the topological
transition for spin ↓ electrons, see Eq. (3)]; Bc↓ < B < Bc↑,
where the charge is �e=2; and Bc↑ < B, where the system
exhibits “spin-charge separation”: the charge is �e, while
the spin is zero. Bc↓ and Bc↑ are different due to spin-orbit
coupling in the CNT; this effect is crucial for realizing the
�e=2 state.
As we will show below, the precise quantization of the

charge localized in the middle region of the CNT in units of
e=2 is a consequence of the symmetry of the CNT under a
rotation by π followed by time reversal. Both chiral and
nonchiral CNTs exhibit such symmetry.
For Bc↓ < B < Bc↑, a precisely quantized fractional

charge appears also at the edge of the CNT (see [23]).
In-gap edge statesmay appear, aswell [24,25].Our setup has
the advantage that the fractional charge is realized near
the CNT’s middle; the bulk is cleaner and better controlled
than the edges. Moreover, in our setup the soliton is far
from anymetallic contacts that bend the CNT’s bands due to
the difference in work function, masking the fractional
charge.
Carbon nanotunbe model.—The low-energy effective

Hamiltonian of aCNTis given byhðkÞ¼ℏvFðξσxkxþσykyÞ.
Here,vF is theDirac velocity, σx, σy are Paulimatrices acting
in the sublattice (A-B) space, and ξ ¼ þ1ð−1Þ corresponds
to the K0 (K) valley, respectively.
The CNT is specified by the chiral vector, c¼n1a1 þ

n2a2, denoted by c ¼ ðn1; n2Þ, which connects two carbon
atoms of the parent graphene sheet [26]. The perpendicular
momentum to the tube is quantized due to its finite
diameter. In an ideal metallic CNT (n1 − n2 ∈ 3Z), the
lines of allowed momenta cross the K, K0 points. An axial
magnetic field B and curvature effects in CNTs shift the
allowed momenta lines away from K, K0 [18,27]. The low-
energy Hamiltonian takes the form [19]

hðk∥Þ ¼ ℏvF

�
ξσx

2πϕ

jcjϕ0

þ σyk∥

�

þ δtσx − ðΔSO
o σx þ ΔSO

z ÞξSz: ð1Þ

Here, ϕ ¼ Ba2ðjcj=2πÞ2 is the flux through the CNT (a is
the lattice spacing), ϕ0 ¼ h=e, k∥ is the momentum parallel
to the CNT, Sz is the spin along the CNTaxis,ΔSO

o ,ΔSO
z are

the strengths of the orbital and Zeeman-type spin-orbit

couplings, respectively [19], and the δt term is due to strain
along the axis of the CNT. The ΔSO

o , ΔSO
z , and δt terms are

induced by curvature [19,28–31]. δt can be modified by
applying external strain to the CNT [27]. We have
neglected Zeeman coupling, which is smaller than the
terms in Eq. (1).
Soliton states and fractional charges.—We now consider

the system in Fig. 1(a). We focus on the case of a zigzag
CNTwith chiral vector (N, 0). Similar considerations hold
for other chiralities (see below). The tensile strain of the
CNT is spatially inhomogeneous, and hence the δt term in
Eq. (1) is x∥ dependent (where x∥ is the coordinate along
the CNT). The wedge is at x∥ ¼ 0. Across the wedge, δt
varies; we assume for simplicity that δtðx∥Þ is piecewise
constant, and denote the values of δt at x∥ < 0 (x∥ > 0) by
δt− (δtþ), respectively.
Then, the effective Hamiltonian is written as

H¼
Z

dx∥

�
mðξ;Sz;x∥ÞσxþℏvFσy

�
−i

∂
∂x∥

��
;þΔSO

z ξSz;

ð2Þ
where mðξ;Sz;x∥Þ¼ℏvFð2πϕ=jcjϕ0Þξ−ΔSO

o ξSzþδtðx∥Þ.
Equation (2) is equivalent to the JR problem [5]. For
ϕ ¼ 0, m is generically nonzero for both valleys, ξ ¼ �1,
and in either side of the wedge. As the magnetic field
increases, there is a sequence of topological phase transitions
wherem goes through zero. For a certain range of magnetic
field, the masses in the two spatial region have an opposite
sign for either one or both spin flavors [see Figs. 2(a)
and 2(b)]. Whenever the mass of one of the spin or valley
bands has an opposite sign in the two regions, there is a
localized state at the interface with an associated charge of
�e=2 [5].
Figure 2(c) shows the spectrum as a function of magnetic

field. We have assumed that δt− > δtþ > ΔSO
o > ΔSO

z > 0.
The first two gap closing points occur for the spin up and
down bands of valley K at x∥ > 0. The corresponding
critical magnetic fields for spin Sz ¼ ↑;↓ are

Bc;Sz ¼
2πϕ0

jcjℏvF
ðδtþ þ ΔSO

o SzÞ: ð3Þ

For Bc↓ < B < Bc↑, there is a single JR soliton state
localized around the interface. The localization length is
l ∼ vF=mðx∥Þ, where mðx∥Þ is the mass at valley K and
spin ↓ at either x∥ > 0 or x∥ < 0. Note that there is a
different decay length to the left and to the right of the
wedge. If the chemical potential is in the bulk gap, there is a
well-defined charge of �e=2 distributed around the inter-
face. The existence of a gap in the spectrum for Bc↓ <
B < Bc↑ requires that ΔSO

o > ΔSO
z . The ratio of ΔSO

o and
ΔSO

z depends on the chiral vector of the CNT (see below).
For B > Bc↑, but below the field in which the first

topological phase transition occurs at x∥ > 0, there are
two soliton states bound to the interface, one for each spin.
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The charge at the interface can be either −e, 0, or e,
depending on the chemical potential. Just as in the SSH
chain [32], the state of the interface exhibits “spin-charge
separation”: the charge�e state has spin zero, while the zero
charge state has spin �ℏ=2. In the latter state, the spin
degeneracy is lifted by the ΔSO

z term.
The equivalence of our system to the SSH model can be

understood microscopically; see [23].
Fractional charge from geometric phases.—The pres-

ence of a fractional charge at the domain wall can be
understood as a consequence of a topological invariant: the
Zak phase [13]. The Zak phase is related to the charge
polarization density. Upon changing δt from δt− to δtþ, the
total change in the polarization, ΔP, is [33]

ΔP ¼ e
2π

X
n∈occ

Z
δtþ

δt−

dðδtÞ
Z

dk∥Imh∂k∥u
ðnÞ
k∥;δt

j∂δtu
ðnÞ
k∥;δt

i:

ð4Þ

Here, the k∥ integral is over the first Brillouin zone (BZ),

juðnÞk∥;δt
i is the Bloch wave function in band n, and the

summation is over the occupied bands.
We can replace Eq. (4) by a 2D integral over the Berry

curvature, F ðkÞ in the BZ of the honeycomb lattice, with
(kx, ky) replaced with (k∥, k⊥), where k⊥ ¼ ðδt=ℏvFÞ −
ξð2πϕ=jcjϕ0Þ [see Eq. (1)]. Here, F ðkÞ ¼ πδðk − KÞ−
πδðk − K0Þ. Therefore, ΔP is nonzero if during the change
of δt, the allowed momenta crosses one or more Dirac
points. In this case, the change in polarization density is
e=2 per Dirac point crossed. The change in the charge at the
interface is Δq ¼ R

x2
x1
dxð∂ΔP=∂xÞ ¼ ΔPðx2Þ − ΔPðx1Þ.

Hence, it is also quantized in units of e=2.
The precise quantization of the polarization is due to a

spatial symmetry of the CNT. ACNTwith an axial magnetic
field is invariant under a rotation by 180° around an axis
perpendicular to the CNT axis, followed by time reversal
[23]. We denote this symmetry operation byRπ. UnderRπ,
P → −P; however, since P in a crystal is only defined
modulo e, Pmode ¼ −Pmode. Hence, the possible values
for P are either 0 or e=2, and the charge at the interface is
quantized in units of e=2. If the interface charge is e=2, an
extra charge of e=2 appears at the end of the CNT.
Note that the system is symmetric under Rπ for any

chiral vector. In armchair CNTs, however, both Dirac
points are always crossed together, and therefore the charge
at the interface is an integer multiple of e.
Above, we have assumed that there is no term in the

Hamiltonian that breaks the symmetry between the A and B
sublattices [a σz term in Eq. (1)]. Such a term would break
the Rπ symmetry, and the charge at the interface can take
any value [34]. Such a term may arise in CNTs if the A-B
symmetry is spontaneously broken due to interactions
[21,35,36].
Finally, we note that the e=2 interface charge is robust in

the presence of disorder, as long as the bulk remains
insulating and the symmetry underRπ is still maintained on
average.
Numerical simulations.—In order to demonstrate the

phenomena described above, we simulated a tight-binding
model of a CNT [23]. The model includes nearest-neighbor
and next-nearest-neighbor hopping [37], as well as Zeeman
and orbital-type spin-orbit coupling. The effect of strain is
modeled by increasing the hopping on each bond by
~δt cos2ðαÞ, where α is the angle between the direction of
the bond and the chiral vector, c. ~δt is taken to have the
following spatial dependence: ~δtðxjjÞ ¼ ~δt− þ ð ~δtþ − ~δt−Þ=
ð1þ exjj=dÞ. We used d ¼ 10a, where a is the lattice
spacing [38].
Figure 1(c) shows the excess charge in the interface

region, as a function of magnetic field and chemical
potential, μ. The excess charge is summed over a region
of length L=3 centered around the interface (where L is
the CNT length). For the given parameters this length

(a)

(c)

(b)

FIG. 2. (a),(b) Quantization lines of the perpendicular momen-
tum around the K point for a zigzag CNT, shown in the
honeycomb lattice Brillouin zone. The allowed values of k⊥
depend on the strain δt on the flux ϕ, and on the spin [see Eq. (1)].
The blue (red) lines correspond to x∥ < 0 (x∥ > 0), respectively.
One of the quantized momenta can sweep through the Dirac point
in one spatial region of the system (a) but not in the other (b). This
results in a Jackiw-Rebbi soliton state and a fractional charge at
the interface. (c) Evolution of the spectrum as a function of axial
magnetic field. White regions correspond to a gap, while filled
regions represent the bulk spectrum. Solid (dashed) lines corre-
spond to the gaps of states at the K (K0) valley. The gap closes,
and the Dirac mass changes sign, at B ¼ Bc↑;↓ for the K valley
bands with spin up and down, respectively.
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corresponds to about 6lðB ¼ B0Þ, where lðBÞ ¼
ℏvF=EgapðBÞ is the length scale associated with the gap
EgapðBÞ between the conduction and valence bands at x∥>0.
The field B0 was tuned such that Bc↓<B0<Bc↑. In this

simulation, we set ~ΔSO
z ¼ 0 for clarity; it is included in the

following.
In Fig. 3 we show the excess charge density as a function

of position, for a magnetic field Bc↓ < B0 < Bc↑, in a (6,0)
zigzag CNT. Near the interface, there is a charge of e=2,
localized over a region whose length is of the order of
lðB ¼ B0Þ; another charge of e=2 is localized near the right
end of the CNT. The inset shows the interface charge for
CNTs with different chiral vectors; the charge is always
e=2, independent of the chiral vector.
Discussion.—We now discuss considerations for an

experimental realization of our proposed setup.
References [20,39–41] demonstrated that it is possible to
close and reopen a semiconducting gap in metallic CNTs
using magnetic fields of a few Tesla. Realizing an interface
charge of e=2 requires to drive only one spin species through
the topological transition. In this case, the maximum gap is
determined by the strength of the spin-orbit coupling in the
CNT, which has been estimated to be of the order of ΔSO

o;z ∼
0.08–1.7 meV [20,40–42]. Using vF ≈ 106m=s, we get that
the interface charge is localized in a region of length
l ∼ ℏvF=ΔSO

o ∼ 0.35–7.5 μm. Thus, our proposal requires
a CNT whose length is a few μm. The possibility of
fabricating long, pristine CNTs, and the detection of local-
ized charges, have been demonstrated in Refs. [43,44].
To estimate the strain-induced gap in theCNT,wenote that

the tension at the contact with the wedge is expected to be
∼10 nN [45]. Using the Youngmodulus of CNT, 0.1–1 T Pa
[46], and the derivative of the energy gap with respect to
strain, 100 meV=0.01 [18], the difference in the gap between
the two regions is of the order of δtþ − δt− ∼ 1–10 meV.

The existence of an interface charge of e=2 depends on
the type of spin-orbit coupling in the CNT. Keeping the
system insulating in the range of magnetic field where only
one spin species has an inverted mass requires that the
orbital-type spin orbit coupling,ΔSO

o , is larger in magnitude
than the Zeeman type term, ΔSO

z . Theoretical consider-
ations suggest that ΔSO

z ∼ cosð3θÞ, where θ is the chiral
angle of the CNT [47], while ΔSO

o does not depend on θ
[30]. In particular, ΔSO

z vanishes for an armchair CNT.
Thus, the optimal chiral angle for realizing a charge of e=2
is close to θ ¼ π=6. This way, ΔSO

z is small, while the K
and K0 points are still crossed at different magnetic fields.
An important practical challenge in observing the soliton

state in our proposed setup is the need to maintain the
chemical potential in the gap throughout the CNT. This can
be done by using an array of metallic gates [43]. If the
wedge is made of a metal covered by an oxide insulting
barrier, it can be used as an additional gate that can tune the
JR state to the Fermi level [23].
Finally, we comment on the effect of Coulomb inter-

actions. As long as the interactions are not strong enough to
drive the system through a phase transition, the value of the
interface charge is fixed to an integer multiple of e=2. The
length scale l over which the localized charge decays
becomes longer in the presence of interactions. However, a
rough estimate shows that this effect is small for realistic
interaction strengths [23]. In the presence of interactions,
the induced charge density decays away from the wedge as
ρi ≃ l−1ðxjj=lÞ−3 [23], rather than exponentially.
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