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We study the frequency-dependent conductivity of nodal line semimetals (NLSMs), focusing on the
effects of carrier density and energy dispersion on the nodal line. We find that the low-frequency
conductivity has a rich spectral structure which can be understood using scaling rules derived from the
geometry of their Dupin cyclide Fermi surfaces. We identify different frequency regimes, find scaling rules
for the optical conductivity in each, and demonstrate them with numerical calculations of the inter- and
intraband contributions to the optical conductivity using a low-energy model for a generic NLSM.
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Introduction.—Interest in topological states of quantum
matter has led to the identification of new gapless electronic
states that support nontrivial geometric structures in their
band structures at or near the Fermi energy. In topological
semimetals, the conduction and valence bands contact at
points or lines in momentum space, and the band degen-
eracy at the contact is protected by symmetries such as
crystalline and time-reversal symmetries. Among the three-
dimensional topological semimetals, Weyl (Dirac) semi-
metals have nondegenerate (degenerate) conduction and
valence bands which touch at discrete points, whereas in
nodal line semimetals (NLSMs), the two bands cross on
closed lines in momentum space [1–4].
When protected by a mirror symmetry, such a nodal line

is “flat” in the sense that it lies in a single plane in k space.
However, the contact line is not similarly constrained to
occur on a constant energy surface. An energy dispersion
on the nodal line has no effect on its topological character,
which is determined by the phase winding of the Bloch
states around the singularity. However, it generically forces
the system into a semimetallic state with coexisting electron
and hole pockets and an unconventional Fermi surface (FS)
geometry, exhibiting the rich structures of Dupin cyclide
geometries [5], as shown in Fig. 1. Here the geometry of the
FS is determined by a combination of the energy dispersion
of the contact line (tilt) and the Fermi energy which play a
crucial role in determining various physical properties
in NLSMs.
The optical conductivity of a low-energy model for a

NLSM in the absence of tilt has recently been studied [6].
However, once an energy tilt is introduced, there is a
competition between two energy scales set by the amount
of dispersion and by the chemical potential. In this work,
we study the consequences of this competition for the low-
frequency conductivity of a NLSM and analyze its char-
acteristic frequency dependence using the geometry of the
Dupin cyclide. We find new spectral features that occur as a
result of its unconventional geometry. For a nonzero Fermi

energy smaller than the tilt energy scale, full Pauli blocking
is prevented, and instead all three diagonal components of
the optical conductivity tensor show linear scaling with
frequency. For the Fermi energy larger than the tilt energy,
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FIG. 1. Evolution of the FS as a function of tilt Δt and Fermi
energy εF with red (blue) indicating the electron (hole) pocket.
(a) At zero Fermi energy with zero tilt, the FS has a one-
dimensional ring shape sitting on the zero-energy plane. (b) With
a finite tilt, the ring shape evolves into a symmetric horn cyclide
containing both electron and hole pockets symmetrically, which
vanish at two contact points. Upon increasing the Fermi energy,
the electron and hole pockets (c) become asymmetric and the
contact points move out from the symmetrical axis, (d) converge
into a single point when the Fermi energy equals the tilt energy,
and (e) vanish when the Fermi energy becomes larger than the tilt
energy. (f) When the Fermi energy equals the energy scale of the
ring radius, the FS is merged into a spherelike shape with no holes
in the center, similar to that of Weyl semimetals.
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the interband optical conductivity recovers a gap due to
Pauli blocking. We find nonanalytic features in both the
frequency dependence of the interband conductivity and
the chemical potential dependence of the Drude stiffness
which arises from Lifshitz transitions of the FS.
Model.—In the continuum approximation, the minimal

Hamiltonian for tilted NLSMs that captures the essential
features of its low-energy excitations takes the form of
a 2 by 2 matrix given by [7,8]

H ¼ ℏvqρσx þ ℏvkzσy þ ℏvt · kσ0; ð1Þ

where σx and σy are the Pauli matrices, σ0 is the identity

matrix, vt is the tilt velocity, qρ ¼ kρ − k0, kρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
,

and k0 is the radius of the nodal ring. The eigenenergies of
the Hamiltonian are given by

ε�ðkÞ ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ρ þ k2z

q
þ ℏvt · k; ð2Þ

which has a ring shape zero-energy contour with a slope of
vt. In the following, we consider tilt only in the in-plane
direction, because it produces electron-hole pockets, lead-
ing to qualitative changes in the optical conductivity,
whereas tilt along the perpendicular axis has little effect
on the optical conductivity unless it is so extreme that the
system is in a type-II semimetallic state [9]. Without the
loss of generality, we therefore set vt ¼ vtx̂.
Remarkably, in toroidal coordinates [9], this NLSM

Hamiltonian in Eq. (1) can be written in the same form
as the low-energy graphene Hamiltonian, but expressed in
polar coordinates (r, θ) centered at k0 [see Fig. 2(a)]:

H ¼ ε0

�
0 ~re−iθ

~reiθ 0

�
þ Δtð1þ ~r cos θÞ cosϕσ0; ð3Þ

where ~r ¼ r=k0, ε0 ¼ ℏvk0, and Δt ¼ ℏvtk0. Thus, in the
energy range where the toroidal structure is maintained, we
can consider NLSMs as a collection of graphene sheets
with tilt in the x direction and the Dirac point shifted from
zero energy by Δt cosϕ [see Fig. 2(b)].
Optical conductivity obtained from a collection of

graphene sheets.—In the linear response limit, we obtain
the optical conductivity of NLSMs by summing up
individual contributions from each of the graphene sheets:

σNLSMii ¼ k0

Z
2π

0

dϕ
2π

σgrðϕÞF iiðϕÞ; ð4Þ

where i ¼ x, y, z, σgrðϕÞ is the optical conductivity
of a graphene sheet located at ϕ with tilt in the x direction,
and F xxðϕÞ ¼ cos2 ϕ, F yyðϕÞ ¼ sin2 ϕ, F zzðϕÞ ¼ 1 are
geometric factors from the projection of an external
electric field on the graphene sheet and that of the in-plane
velocity of graphene on the current direction. Note that

Eq. (4) is valid for ℏω < 2ε0 where the toroidal structure is
maintained.
First, consider the case of Δt ¼ 0. Since the optical

conductivity from a single Dirac cone filled to energy εF is
given by σgrðϕÞ¼ðe2=16ℏÞΘðℏω−2jεFjÞ [12], the optical
conductivity of the NLSM is

σii
σ0

≈
� 1

2
Θðℏω − 2jεFjÞ for i ¼ x; y;

Θðℏω − 2jεFjÞ for i ¼ z;
ð5Þ

where σ0 ¼ e2k0=16ℏ. Thus, for ℏω < 2jεFj the optical
conductivity vanishes due to Pauli blocking, whereas for
2jεFj < ℏω < 2ε0 it remains constant [6].
For Δt ≠ 0, the conductivity should be modified to

take into account (i) the shift of the Dirac point from
zero energy [first term of σ0 in Eq. (3)] and (ii) the tilted
linear band dispersion (second term). At low frequencies
(ℏω ≪ ε0), however, when the Dirac points lie close to zero
energy, the tilt in the band dispersion is negligible. Thus,
σiiðωÞ at low frequencies can be obtained using σgrðϕÞ≈
ðe2=16ℏÞΘðℏω−2jεF−ΔtcosϕjÞ in Eq. (4), giving

σii
σ0

≈
Z

2π

0

dϕ
2π

Θðℏω − 2jεF − Δt cosϕjÞF iiðϕÞ: ð6Þ

In the following, we present numerically calculated
optical conductivities over a wide frequency range in the
presence of tilt and finite Fermi energy by evaluating the
Kubo formula [see Eq. (6) in Supplemental Material [9]].
We analyze the results by investigating the geometry of the
phase space (PS) for interband transitions and the low-
frequency analytic forms obtained from Eq. (6). Here, the
PS for interband transitions is given by the intersection
between the outside of the FS and the PS allowed by energy
conservation. For a given frequency ω, the PS for NLSMs
allowed by energy conservation is the surface of the
momentum space torus which satisfies ℏω¼εþðkÞ−ε−ðkÞ.
Optical conductivity with εF ¼ 0.—We first consider the

case where εF ¼ 0 in the presence of tilt. Figures 3(a)
and 3(b) show calculated optical conductivities with tilt
energies of Δt ¼ 0.3ε0 and Δt ¼ 0.6ε0, respectively.

Zero energy plane

(b)(a)

FIG. 2. (a) Schematic illustration of toroidal coordinates and
graphene sheets standing perpendicular to the nodal-line plane.
(b) The Dirac cone energy dispersion of the graphene sheet
located at ϕ. Note that the Dirac cone is shifted from the zero
energy by Δt cosϕ.

PRL 119, 147402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

147402-2



Note that the optical conductivities show kink structures at
transitions between different frequency domains (I, II, and
III) and characteristic frequency dependences determined
by the tilt energies.
In region I, the optical conductivity in the tilt direction is

σxx ∝ ω3 at low frequencies, while those in the other

directions (σyy and σzz) are ∝ω [see region I in Figs. 3(a)
and 3(b)]. Figures 3(c) and 3(d) show the corresponding PS
for interband transitions, which is divided into two separated
islands located at ϕ ¼ �ðπ=2Þ. As demonstrated above in
Eq. (6), we can express the optical conductivity by averaging
contributions from the graphene sheets that occupy these
two isolated regions. In the low-frequency limit, in the
vicinity of the contact points, the optical conductivity is
approximately given by

σii
σ0

≈
Z
ϕ∼�π=2

dϕ
2π

Θðℏω − 2jΔt cosϕjÞF iiðϕÞ

≈
2

π

Z
ℏω=2Δt

0

dϕF ii

�
ϕþ π

2

�
: ð7Þ

With the expansion of F iiðϕþ π=2Þ around ϕ ¼ 0, the
resulting conductivities in the lowest order are

σii
σ0

¼
(

1
12π ðℏωΔt

Þ3 for i ¼ x;

ℏω
πΔt

for i ¼ y; z;
ð8Þ

which agree with our numerical results.
At the intersection between regions I and II-1, the PS

allowed by energy conservation (yellow torus) begins to
touch the boundary of electron (red) and hole (blue)
pockets, and the two isolated PS regions for interband
transitions merge, forming a connected geometry distin-
guished from that in region I [see Figs. 3(e) and 3(f)]. Note
that this change of geometry produces a kink in σii seen
most clearly in σzz because of its ϕ-independent projection
factor [F zzðϕÞ ¼ 1; see Eq. (4)]. Such a geometrical
change also occurs at the intersection between regions
II-1 and II-2, giving a kink in σzz. By observing the cross-
sectional view of the PS allowed by energy conservation
and the FS in the kx − kz plane [see Figs. 3(i) and 3(j)], we
can calculate the frequencies at which kinks appear.
Alternatively, since the geometrical changes associated
with additional interband transitions occur along the kx
axis, the problem of finding kink frequencies is reduced
to obtaining ω1 and ω2 in Figs. 3(k) and 3(l): ℏω1 ¼
½2Δt=ðε0 þ ΔtÞ�ε0, ℏω2 ¼ ½2Δt=ðε0 − ΔtÞ�ε0.
In region II-2, for Δt ¼ 0.3ε0, the PS allowed by energy

conservation [yellow torus in Fig. 3(g)] covers the whole
FS while keeping its toroidal structure similar to the
untilted case; thus, the optical conductivity shows flat
behavior with exactly the same height as that of untilted
NLSMs. For Δt ¼ 0.6ε0, however, the PS allowed by
energy conservation [yellow spherelike manifold in
Fig. 3(h)] is no longer a torus and does not fully cover
the whole FS, exhibiting a monotonic increase in σzz
instead of the flat behavior. Note that the PS allowed by
energy conservation changes its geometry from a torus to a
spherelike manifold at the frequency ℏω3 ¼ 2ε0. Thus, the
condition for the existence (absence) of the flat region can
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FIG. 3. (a),(b) Calculated optical conductivities of NLSMs for
εF ¼ 0 with two different tilt energies of (a) Δt ¼ 0.3ε0 and
(b)Δt ¼ 0.6ε0. Regions I, II-1, II-2, and III represent the frequency
domains in which the PS for interband transitions grows contin-
uously without any abrupt changes. (c)–(h) The PS allowed by
energy conservation indicated by a yellow torus alongwith electron
(red) and hole (blue) pockets in different frequency domains. Note
that in region I the PS allowed for interband transitions consists of
two local domains, while in region II they merge together to form a
connected geometry. (i),(j) Cross-sectional views of the electron-
hole pockets and the PS allowed by energy conservation in the
kx − kz plane at the frequencies ofω ¼ ω1 (yellow solid lines) and
ω ¼ ω2 (yellow dashed lines), where the PS allowed for interband
transitions changes its geometry leading to kink structures in the
optical conductivity. (k),(l) Energy band dispersions along the kx
axis with ky ¼ kz ¼ 0 for (k) Δt ¼ 0.3ε0 and (l) Δt ¼ 0.6ε0. The
geometrical changes occur at frequencies corresponding to the
onset of interband transitions indicated by arrows.
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be obtained from the conditionω2 < ω3 (ω2 > ω3), leading
to Δt < 0.5ε0 (Δt > 0.5ε0).
In region III, the PS allowed by energy conservation for

both Δt ¼ 0.3ε0 and Δt ¼ 0.6ε0 merge into a spherelike
geometry covering the whole FS, similar to that of Weyl
semimetals. Thus, at high frequencies in this frequency
domain, the optical conductivity shows a linear behavior, as
already shown in previous studies [6].
Optical conductivity with εF ≠ 0.—Next, we consider

the case where εF ≠ 0 in the presence of tilt. Figures 4(a)
and 4(b) show calculated optical conductivities of NLSMs
for εF¼0.1ε0 and εF¼0.5ε0, respectively, with Δt¼0.3ε0.
At low frequencies, the optical conductivity for εF ¼ 0.1ε0
increases linearly with increasing ω, whereas that for
εF ¼ 0.5ε0 exhibits an optical gap.
To address the difference in the low-frequency behav-

iors, in Figs. 4(c) and 4(d) we show the PS allowed by
energy conservation corresponding to a low-frequency
range along with electron-hole pockets. For εF ¼ 0.1ε0,
there is an available PS for interband transitions consisting
of two separate local domains located around the contact
points between the electron and hole pockets. Similarly
as we did for εF ¼ 0, after replacing jΔt cosϕj with
jεF − Δt cosϕj in Eq. (7), we obtain the low-frequency
optical conductivity as σii=σ0 ≈ Ciðℏω=πΔtÞ, where i ¼ x,
y, z, ϕ0 ¼ cos−1ðεF=ΔtÞ is the location of graphene sheets
sitting around the PS for interband transitions, Cx ¼
½ðεF=ΔtÞ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðεF=ΔtÞ2

p
�, Cy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðεF=ΔtÞ2

p
, and

Cz ¼ ½1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðεF=ΔtÞ2

p
�. Note that, in the presence of

finite εF, the linear term dominates over the cubic one in the
optical conductivity along the tilt direction, in contrast to
the εF ¼ 0 case [see Eq. (7)]. (For εF ¼ Δt case, see Sec. III
in Ref. [9]).
For εF ¼ 0.5ε0, there is no available PS for interband

transitions at low frequencies, because the electron pocket
becomes large enough to cover the entire PS allowed by
energy conservation, leading to an optical gap due to Pauli
blocking [see Fig. 4(d)]. The optical gap persists up to the
frequency where the PS allowed by energy conservation
touches the boundary of the electron pocket. Similarly as in
the εF ¼ 0 case, we can obtain the size of the optical gap to
be ℏωgap ¼ 2½ðεF − ΔtÞ=ðε0 þ ΔtÞ�ε0 and thus the condi-
tion for the existence of an optical gap: εF > Δt.
As εF increases, the electron (hole) pocket grows

(shrinks), because the number of electrons in the system
increases. The imbalanced sizes of the electron and hole
pockets lead to two more kinks compared with the εF ¼ 0
case, as shown in Figs. 4(e) and 4(f). Similarly as in the
εF ¼ 0 case, we can obtain ℏω1¼2jðεF−ΔtÞ=ðε0þΔtÞjε0,
ℏω2 ¼ 2jðεF − ΔtÞ=ðε0 − ΔtÞjε0, ℏω3 ¼ 2jðεF þ ΔtÞ=
ðε0 þ ΔtÞjε0, and ℏω4 ¼ 2jðεF þ ΔtÞ=ðε0 − ΔtÞjε0. It
follows that the condition for the existence of a flat
region can be obtained from ℏω4>ℏω5≡2ε0, leading to
Δt < 1

2
ðε0 − εFÞ [9]. Here ω5 is the frequency where the PS

allowed by energy conservation changes its geometry from a
torus to a spherelike manifold.
The intraband contribution to optical conductivity gives

rise to a Drude peak at low frequencies whose weight also
inherits a nonanalytic density dependence from the geom-
etry of the FS. Interestingly, these are seen most clearly in
the derivatives of the weight with respect to Fermi energy,
as shown in Fig. 5.
Discussion.—Introducing spin-orbit coupling (SOC) can

gap out a nodal line and produce pairs of Weyl points [8].
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FIG. 4. (a),(b) Calculated optical conductivities of tilted
NLSMs with Δt ¼ 0.3ε0 for two different Fermi energies of
(a) εF ¼ 0.1ε0 and (b) εF ¼ 0.5ε0. (c),(d) The PS allowed by
energy conservation indicated by a yellow torus along with
electron (red) and hole (blue) pockets in the low-frequency
domain for (c) εF ¼ 0.1ε0 and (d) εF ¼ 0.5ε0. (e),(f) Cross-
sectional views of the electron-hole pockets and the PS allowed
by energy conservation in the kx − kz plane at frequencies where
kinks appear in the optical conductivity.

FIG. 5. (a) The Drude weight of tilted NLSMs with Δt ¼ 0.3ε0
and (b) the intraband (σintrazz , dotted line) and interband (σinterzz ,
dashed line) contributions to the optical conductivity σzz (solid
line). The inset in (a) shows the derivative of the Drude weight
near εF ¼ Δt, where the Drude weight exhibits a nonanalytic kink
behavior due to an abrupt change in the geometry of the FS.
Here D0 ¼ ðe2=ℏÞk0ε0, and the Drude weight is defined to be
σintraii ¼ DiiδðℏωÞ. For (b), we use a finite broadening term
η ¼ 0.001ε0 replacing the 0þ term in Eq. (6) in [9].
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In such cases, at frequencies below the SOC scale, the PS
for interband transitions are spheres enclosing the Weyl
nodes, and the conductivity will revert to linear frequency
scaling known for Weyl semimetals (WSMs). Above the
SOC energy, however, the separated PS recovers a toroidal
shape, and this will have the characteristic dependence
found in our work. Recent calculations for WSMs in the
TaAs class indicate that these materials are weakly broken
line node systems where the tilt scale dominates the SOC
scale [13]. Thus, our analysis is applicable over a wide
frequency range and can be used as a signature of these new
states of matter in optical experiments.
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