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The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study
optical spin-orbit interactions in semiconducting Dirac-like systems. We unveil topological phase
transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external
static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation
of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation
degrees of freedom, and material properties, and features nontrivial topological properties. We discover that
photonic Hall shifts are sensitive to spin and valley properties of the charge carriers, providing an
unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.
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At macroscopic scales electromagnetic radiation’s
spatial and polarization degrees of freedom are inde-
pendent quantities that can be described by traditional
geometric optics. A different landscape exists in the
subwavelength regime where emergent photonic spin-
orbit interactions culminate in spin-dependent changes
in light’s spatial properties [1,2]. A striking optical
phenomena originating from spin-orbit interactions is
the spin Hall effect of light (SHEL), which corresponds
to the shift of photons with contrary chirality to opposite
sides of a finite beam undergoing reflection or refraction
[3–6]. The SHEL is universal to any interface and it
exhibits a unique potential for applications in precision
metrology, including nanoprobing [7] and thin films and
multilayer graphene characterization [8–10]. It has also
been used to identify different absorption mechanisms in
semiconductors [11,12].
Staggered two-dimensional semiconductors [13–15],

including silicene [16], germanene [17], and stanene
[18,19] are monolayer materials made of silicon, germa-
nium, and tin atoms, respectively, arranged in a honeycomb
lattice. Unlike graphene [20], these materials are nonplanar
and possess intrinsic spin-orbit coupling that results in the
opening of a gap in their electronic band structure. Under
the influence of static and circularly polarized electromag-
netic fields the four Dirac gaps are in general nondegen-
erate and the monolayer may be driven through several
phase transitions involving topologically nontrivial states
[21–25]. Previous studies on the SHEL in the graphene
family have been restricted to graphene [26–28], therefore
overlooking the role of finite staggering, spin-orbit cou-
pling, and spin and valley dynamics. The interplay between
topological matter and the SHEL was considered in bulk
materials with axion coupling [29]. In this Letter we take
advantage of the crossroads between topology, phase
transitions, spin-orbit interactions, and Dirac physics in

staggered 2D semiconductors to uncover topological phase
transitions in the photonic spin Hall effect. We show that
the SHEL depends on the topological invariant describing
each phase and it allows us to probe the spin and valley
properties of charge carriers throughout different phase
transitions. The marriage of spinoptics, spintronics, and
valleytronics in 2D semiconductors opens a promising
route to investigate emergent electronic and photonic
phenomena in the graphene family.
Let us consider that a Gaussian beam [30] of frequencyω

impinges at an angle θ on a staggered monolayer placed on
top of a substrate of dielectric constant ε. The incident
beam Ei ¼ Aðyi; ziÞ½fpx̂i þ fsŷi − ifskyiðΦþ ikziÞ−1ẑi�
is confined in the y direction only. Here, Aðy; zÞ ¼
½2=πw2

0ð1þ k2z2=Φ2Þ�1=4eikz−k2y2=2ðΦþikzÞ is the Gaussian
amplitude, w0 is the beam waist, k ¼ ω=c is the wave
number, and Φ ¼ k2w2

0=2 is the Rayleigh range. The
polarization of the beam is given by the complex unit
vector f̂¼fpx̂iþfsŷi, where fp¼1, fs¼0 (fp¼0, fs¼ 1)
corresponds to a linearly polarized transverse magnetic
(electric) state. Relevant unit vectors are defined in Fig. 1. In
addition to the Gaussian beam, the system is subject to a
static electric field Ez and to a circularly polarized plane
wave of intensity I0 and frequency ω0 ≫ ω propagating
along the z direction. While Ez generates an electrostatic
potential 2lEz between the two inequivalent sublattices of
the monolayer (see the inset in Fig. 1) [21,22], the high
frequency laser modifies the electronic band structure of the
material and chiral states may arise even in the absence of
magnetic fields [23,24]. As a consequence, the material
presents a nonzero Hall conductivity that induces polariza-
tion conversion of the incident radiation.
Analytical results for the reflected electromagnetic field

Er can be derived within the paraxial approximation.
Expanding the incident beam in a plane wave basis and
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enforcing standard boundary conditions for each compo-
nent, one obtains

Er ≃ Er½ð1þ iρRÞAðyr − ~δ1; zrÞ − ρIAðyr − ~δ2; zrÞ�ê−
þ ½ð1 − iρRÞAðyr − ~δ2; zrÞ þ ρIAðyr − ~δ1; zrÞ�êþ;

ð1Þ
where Er is a constant, ρ ¼ ρR þ iρI ¼ ðfsrss þ fprspÞ=
ðfprpp þ fsrpsÞ, and rij are the Fresnel’s reflection coef-
ficients for incoming j-polarized and outgoing i-polarized
plane waves. Expressions for rij in terms of the mono-
layer’s conductivity can be derived by modeling the 2D
material as a surface density current at z ¼ 0 [31]. Besides,
ê� ¼ ½x̂r � iðŷr − βyrẑrÞ�=

ffiffiffi

2
p

are left ðþÞ and right ð−Þ
circularly polarized unit vectors with β ¼ ik=ðΦþ ikzrÞ,
and x̂r¼x̂i−2x̂Lðx̂i ·x̂LÞ, ŷr¼ ŷi, and ẑr¼ẑi−2ẑLðẑi ·ẑLÞ.
Note that the reflected beam corresponds to the super-
position of left and right circularly polarized states given by
the sum of twoGaussians centered at ~δ1 and ~δ2 andweighted
by the real and imaginary parts of ρ. For low-dissipative
materials (ρI ≪ ρR), each component of the field reduces to
singleGaussianswith photons of opposite helicity shifted by
~δ1 (right) and ~δ2 (left). The complex displacements ~δl can be
conveniently written as ~δl ¼ ~ΔIF þ ð−1Þl ~Δr (l ¼ 1, 2),
where ~ΔIF ¼Ypðjρj2þ1Þ−1ðfpþfsrps=rppÞ−1þfp↔ sg,
and Yp ¼ ifsðrpp þ rssÞ cot θ=krpp, Ys ¼ −Ypjp↔s, and
~Δr is obtained from ~ΔIF by replacing Yp → iρYp and

Ys → −iYs=ρ�. We mention that ΔIF ¼ Re½ ~ΔIF� and ΘIF ¼
kIm½ ~ΔIF�=Φ are the spatial and angular Imbert-Fedorov
shifts [4,32,33], respectively. The SHEL shifts of the
intensity distribution centroid for left and right circular
polarizations can be cast as

Δ�
SHEL ¼ ΔIF � Δr ¼ ΔIF � Re

�
~Δrð1þ ρ�2Þ þ 2ρI ~ΔIF

1þ jρj2
�

:

ð2Þ

In order to evaluate Δ�
SHEL one needs the optical

conductivity tensor of the monolayer at temperature T
and doping μ. Using Kubo’s formalism [34,35] one obtain
σijðω;μ;TÞ¼

P

η;s

R
∞
−∞ ~σηsijðω;EÞ=4kBTcosh2½ðE−μÞ=2kBT�dE

with zero temperature conductivities ~σηsij ðω; μÞ given by

~σηsxx
σ0=2π

¼ 4μ2− jΔη
sj2

2ℏμΩ
Θð2μ− jΔη

sjÞþ
�

1−
jΔη

sj2
ℏ2Ω2

�

tan−1
�
ℏΩ
M

�

þ jΔη
sj2

ℏΩM
;

~σηsxy
σ0=2π

¼ 2ηΔη
s

ℏΩ
tan−1

�
ℏΩ
M

�

: ð3Þ

Here, ~σηsyy¼ ~σηsxx, ~σ
ηs
yx¼− ~σηsxy, σ0 ¼ e2=4ℏ, andΩ ¼ −iωþ Γ,

where Γ is the scattering rate, and M ¼ maxðjΔη
sj; 2jμjÞ.

The mass gap Δη
s ¼ ηsλSO − elEz − ηΛ depends on the

strength of the intrinsic spin-orbit coupling λSO (∼2, ∼20,
and ∼300 meV for silicene, germanene, and stanene [13])
and the spin (s ¼ �1) and valley (η ¼ �1) indices. The
coupling constant between the monolayer and the high
frequency laser is Λ ¼ �8παv2FI0=ω

3
0, where α is the fine

structure constant, vF is the Fermi velocity, and the þð−Þ
sign corresponds to left (right) circular polarization. The
external fields allow for extraordinary control of the
optoelectronic response of the monolayer (see Fig. 2).
For instance, at Ez ¼ Λ ¼ 0 the system behaves as a
quantum spin Hall insulator (QSHI). If we increase Λ
while keeping Ez ¼ 0, the Dirac gaps for s ¼ þ1 decrease.
At Λ ¼ λSO these gaps close and the system undergoes a
topological phase transition from the QSHI phase to the
spin polarized metal (SPM) phase. Further increasing Λ
results in reopening the gaps and the system reaches the
anomalous quantum Hall insulator (AQHI) phase. Similar
transitions can be obtained by changing Ez. As a conse-
quence, staggered semiconductors of the graphene family
present a rich phase diagram [23]. Many of the phases have
nontrivial topological features that are characterized by a
nonzero Chern number C ¼ P0

η;s ηsign½Δη
s�=2, where the

prime indicates that only open gaps should be summed over.
For a left circularly polarized laser, C ¼ 0, −1, −2 in the
QSHI, SPM, and AQHI phases, respectively (see Fig. 3 for
other phases). In Figs. 2(b) and 2(c) we illustrate the
behavior of σxx and σxy as a function of ω in the afore-
mentioned phases. Note that Re½σxy� (Re½σxx�) is propor-
tional to C (n) at low frequencies and small dissipation.
In Fig. 3 we unveil the role of topology and spin-orbit

interactions in the photonic spin Hall effect for a suspended
staggered monolayer. Figures 3(a) and 3(b) show the phase
diagram for the Imbert-Fedorov and relative SHEL dis-
placements, respectively. The dashed white lines mark

FIG. 1. Schematic representation of the system under study.
The inset exhibits the top and side views of staggered graphene
family materials. The lattice constant and staggering length
values are a ¼ 3.86, 4.02, and 4.7 Å, and l ¼ 0.23, 0.33, and
0.4 Å for silicene, germanene, and stanene, respectively [24].
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semimetallic [spin-valley polarized metal (SVPM), SPM,
and single Dirac cone (SDC)] phases where at least one
gap is closed. Note that both shifts present signatures of
the phase transitions taking place in the material. In the
insulating QSHI, band insulator (BI), AQHI, and polarized-
spin quantum Hall insulator (PS-QHI) phases all Dirac gaps
are open with ΔIF and Δr being weakly affected by the
external fields. However, close to phase boundaries a strong
modulation of the photonic shifts is possible. For instance,
ΔIF changes from positive to negative values near semi-
metallic phases even for small variations of Ez or Λ [see
Fig. 3(c)]. We point out that Δr (ΔIF) gives the dominant
contribution to Δ�

SHEL in the QHSI and BI (AQHI and PS-
QHI) phases. Both ΔIF and Δr are equally relevant as we
approach semimetallic states. The width of the region
around a phase transition where abrupt variations in the
SHEL occur is determined by the frequency of the imping-
ing beam. Indeed, for beam frequencies smaller than all
Dirac gaps no electrons can be excited from the valence to
the conduction band. On the other hand, for phase space
regions where jΔη

sj < ℏω the Gaussian wave may generate
electron-hole pairs, modifying the layer’s conductivity.
A closer inspection of the regions next to phase transition

boundaries shows that topology plays a crucial role in the
SHEL. Let us consider that we drive the system through
distinct phases by increasing Λ while keeping Ez fixed. For
elEz=λSO ¼ 0.5 [Fig. 3(c)] we note thatΔIF andΔr present
a smooth transition from the QSHI to the PS-QHI phase
while crossing the SDC phase with CSDC ¼ �1=2. How-
ever, a highly nonmonotonic behavior appears near the
CSDC ¼ �3=2 semimetallic phases as the system goes from
the PS-QHI to the AQHI state. We checked that ΔIF and Δr
present a nontrivial (monotonic) dependence with Ez and Λ
in any transitionwhere all (at least one) phases involvedhave

C ≠ 0 (C ¼ 0). Since C depends on the characteristics of the
open (closed) gaps, this result suggests that the SHEL is
sensitive to the spin and valley indices of the charge carriers
affected by the transition. This is in remarkable contrast with
effects of topological phase transitions in quantum fluctua-
tions [25], where electromagnetic interactions in semime-
tallic phases depend on the number of closed gaps but not on
the values of η and s. Hence, light beam shifts could be used
to probe the dynamics of specific Dirac gaps across a phase
transition. Finally, note that ΔIF changes sign whenever the
polarization of the high frequency laser is swapped from left
(Λ > 0) to right (Λ < 0), enabling control of the SHEL
direction. Contrariwise, Δr is an even function of Λ.
Inversion of the Ez direction does not affect the sign of
any shifts (not shown).
Figure 3(d) depicts the impact of doping on the SHEL

phase transitions for elEz=λSO ¼ 0.5. In the regions where
jμj < jΔη

sj the effect of doping can be neglected and the
shifts correspond to those due to neutral monolayers.
However, close to phase transition boundaries where
jμj > jΔη

sj, intraband transitions take place and the influ-
ence of doping is appreciable. In contrast to neutral layers,
for instance, a peak in Δr emerges around Λ=λSO ¼ 0.5 for
μ ¼ 0.05λSO. Further increasing the Fermi energy allow us
to shift the peak’s position to lower values of Λ. Similarly,
near the phase transition at Λ=λSO ¼ 1.5 a crossover in Δr
from two narrow minima to a broad one occurs as doping is
increased.

FIG. 3. Phase diagram of (a) ΔIF and (b) Δr for suspended
neutral staggered monolayers. The electronic phases are the
quantum spin Hall insulator (QSHI), the spin-valley polarized
metal (SVPM), the band insulator (BI), the single Dirac cone
(SDC), the spin-polarized metal (SPM), the anomalous quantum
Hall insulator (AQHI), and the polarized-spin quantum Hall
insulator (PS-QHI). (c) ΔIF (blue) and Δr (red) as a function of Λ
for μ ¼ 0. (d) Δr vs Λ for μ=λSO ¼ 0.05 (blue), 0.1 (red), and 0.2
(black). The beam is s polarized; ℏω ¼ 0.1λSO, θ ¼ π=4,
d0 ¼ ℏc=λSO, and elEz=λSO ¼ 0.5 in (c) and (d) [36].

FIG. 2. (a) Electronic band structure of graphene family
semiconductors for spin down (s ¼ −1) and up (s ¼ þ1). n
and C are the number of closed gaps and Chern number,
respectively. Parameters are felEz=λSO;Λ=λSOg ¼ f0; 0g (left),
f0; 1g (middle), and f0; 2g (right). Real (solid) and imaginary
(dashed) components of (b) σxx and (c) σxy, for the phases
described in (a). The layer is neutral, kBT ¼ 10−2λSO, and
ℏΓ ¼ 0.002λSO.
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In order to get further insight into the interplay between
topological phase transitions and the SHEL, we perform
an expansion of Eq. (2) for small frequencies and dis-
sipation for a neutral monolayer at zero temperature. For an
s-polarized beam and up to leading order in ω, Γ, one has

Δ�ðsÞ
SHEL

�
�
�
C¼0

QSHI;BI
SVPM

¼ −c sin θ cos θ
�

ℏ
jΔej

Ce cos θ �
1

ω

�

;

Δ�ðsÞ
SHEL

�
�
�
C≠0
SPM
SDC

¼ −c sin θ cos θ
n2π2 þ 64C2cos2θ

�
ℏ

jΔej
64C
3

cos θ � n2π2

ω

�

;

Δ�ðsÞ
SHEL

�
�
�
C≠0
AQHI

PS−QHI

¼ −
ℏc

3jΔej
sin θ

�
1

C
� Z0σ0Γ

πω

�

; ð4Þ

where Ce ¼ jΔej2
P0

η;s ηsignðΔη
sÞ=2jΔη

sj2, jΔej−1 ¼
P0

η;s jΔη
sj−1, andZ0 is thevacuum impedance. Similar results

hold for p-polarized waves by replacing sin θ → − sin θ and
cos θ → 1= cos θ. Note that topologically trivial phases have
the same dependence on the incidence angle θ and material
properties, without distinction between insulating and semi-
metallic states. Moreover, for C ¼ 0 and small frequencies

the first term in Δ�ðsÞ
SHEL can be neglected. Consequently, the

SHEL becomes independent of the optical response of the

2D layer and Δ�ðsÞ
SHEL is maximized for θ≃ π=4. A different

landscape exists when topology enters into play. Unlike the
C ¼ 0 case, nontrivial topological states allow for a clear
distinction between semimetallic and insulating phases of the
system. Indeed, in theAQHI andPS-QHI states theSHEL is a
harmonic function of θ and decays with C. However, at phase
transition boundaries a complex interplay between θ and C
determines the characteristics of the reflected beam.Also, the

fact that one cannot split the contributions ofC andn toΔ�ðsÞ
SHEL

in the SPM and SDC states ratifies our conclusion that
photonic shifts are sensitive not only to the number of closed
gaps but also to the spin and valley indices.
Figure 4(a) depicts the behavior of the SHEL shifts as a

function of the incidence angle at different points of the
phase diagram. Note that for C ≠ 0 the incidence angle that

maximizes Δ�ðsÞ
SHEL is a function of the material properties

in each phase. Figure 4(b) shows the dependence of Δ�
SHEL

on the frequency of the Gaussian beam, clearly illustrating
the 1=ω increase of the shifts at long wavelengths [see
Eq. (4)]. For frequencies ℏω≳ λSO all shifts monotonically
decrease, preventing the SHEL to effectively probe dis-
tinct topologies. In both Figs. 4(a) and 4(b) the approxi-
mated results obtained through Eq. (4) are in excellent
agreement with the full numerical calculations given
by Eq. (2). In the AQHI phase, however, Eq. (4) is
inaccurate for grazing incidence (θ ≳ 85°) and frequencies
ℏω≳ 0.5λSO. Figures 4(c) and 4(d) describe how dissi-
pation and temperature affect the SHEL in the graphene
family. We note that increasing either Γ or T results in
reduced contrast between electronic phases, although a

better distinction between Δþ
SHEL and Δ−

SHEL is achieved. It
is also clear that thermal effects have a greater impact on
the SHEL than dissipation. The nonmonotonic behavior
of Δ�

SHEL as we change T follows from the fact that thermal
excitations can create electron-hole pairs in the monolayer
even if the frequency of the incident beam does not match
any of the mass gaps. Finally, despite the recent progress in
the fabrication of free standing stanene [19], the inclusion
of a substrate may be relevant for practical applications.
Metallic substrates are highly reflective in the frequency
ranges of interest, thus dominating the SHEL over the
topological phase transitions emerging from the 2D semi-
conductor. On the other hand, a good contrast between the
shifts at different electronic phases can be achieved for
lossless low-refractive index dielectric substrates (ε< 1.6).
In Figs. 4(e) and 4(f) we show the Imbert-Fedorov and
relative SHEL shifts as a function of wavelength λ for
stanene on top of silicon carbide [37]. Although it is
difficult to discern the electronic phases for an s-polarized
beam (not shown), the effect of topological phase tran-
sitions on ΔIF and Δr is clearly appreciated for p polari-
zation and midinfrared frequencies (in the range shown
0.44≲ ReðεÞ≲ 1.52 and ImðεÞ < 0.09). Note that Δ�

SHEL
can be ∼λ and the position of the peak (zero) of ΔIF (Δr)
depends on the electronic phase, which is another signature
from the distinct topologies enabled by the graphene
family.

FIG. 4. (a)–(d) Photonic spin Hall shifts Δ−
SHEL (solid) and

Δþ
SHEL (dashed) as a function of different parameters for a

suspended neutral monolayer and s polarization. The dotted
curves correspond to the results in Eq. (4). (e) ΔIF and (f) Δr vs
wavelength for a p-polarized beam impinging on a stanene
coated SiC substrate. In all panels felEz=λSO;Λ=λSOg ¼ f0; 0g
(QSHI, blue), f0; 1g (SPM, black), f0; 2g (AQHI, red), and
f0.5; 1.5g (SDC, orange).
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In summary, we have discussed topological phase
transitions in the photonic spin Hall effect due to the
interaction of a Gaussian beam with staggered monolayers
of the graphene family. We showed that the SHEL presents
signatures of the number of Dirac cones closed and that it
depends on theChern number characterizing the topology of
each phase. Given the reported sensitivities for measuring
the SHEL through weak measurement approaches [5], we
conclude that an experimental demonstration of our results
iswithin current capabilities. In spite of the fast experimental
progress in the synthesis of staggered materials of the
graphene family [13–19] suggesting that they will be easily
accessible in the near future, someof our results can be tested
in graphene, as it presents topological insulator features
under circularly polarized illumination (only the QSHI and
AQHI phases can be probed in this case) [38]. We envision
the effects predicted here will greatly impact research in
spinoptics, spintronics, and valleytronics.
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