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We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We
develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe
Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We
derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy,
which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a
variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply
these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature
about the meaning of the coefficient of the Berry phase term in the nematic effective action.
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Introduction.—In recent years there have been a plethora
of new advancements in the physics of the fractional
quantum Hall (FQH) effect. Notably, several related devel-
opments involving the interplay of quantum Hall physics
and geometry have emerged. First, it was recently under-
stood that the response of a quantum Hall state to variations
of the background spatial geometry reveals universal
properties of the state that go beyond topological effective
theory [1–17]. A particularly interesting quantity is the Hall
viscosity [18–20], which in rotationally invariant systems is
related to the shift [1,19,21], and is given by a Berry phase
accumulated by the quantum Hall wave function on a torus
under adiabatic changes of the aspect ratio. When rotational
invariance is broken, the Hall viscosity becomes a multi-
component tensor [22]; however, its properties and relation
to Berry phases have not yet been understood.
Additionally, there has been a flurry of recent exper-

imental [23–26] and theoretical [27–31] interest in quantum
Hall states with spontaneously broken rotational symmetry,
i.e., nematic quantum Hall states [32,33]. Because the
nematic order parameter is described by a symmetric
matrix, it couples to the microscopic degrees of freedom
in a way similar to the background spatial metric [29,30]. In
the isotropic phase, fluctuations of the nematic order
parameter are massive and describe the dynamics of the
angular momentum two gapped Girvin-Macdonald-
Platzman (GMP) [34] magnetoroton mode [29]. In the
symmetry broken phase the fluctuations of the order
parameter are gapless (up to lattice and boundary effects).
In this Letter, we develop a unifying formalism that

bridges the chasm between these new areas of quantum
Hall physics. We explain how to construct a low
energy effective theory of quantum Hall states with quad-
rupolar anisotropy, coupled to perturbations of both the
electromagnetic field and spatial geometry. Our construc-
tion is reminiscent of a bimetric theory of massive gravity
[35]. The first metric is determined by the geometry of

space, while the second metric is determined by the
anisotropy. Note, however, that we treat both metrics as
nondynamical background fields. We use this formalism to
derive (the nondissipative parts of) linear response coef-
ficients in the presence of anisotropy. We also introduce a
new response function that probes the coupling of a
quantum Hall state to anisotropy. In order to verify our
model, we numerically compute the Hall viscosity for a
variety of anisotropic quantum Hall states. Our construc-
tion is also well suited to describe the nematic quantum
Hall states in the isotropic phase and with a quenched
configuration of the nematic order parameter as discussed
in Supplemental Material [36].
Geometry.—We start with a brief review of the geometry

relevant in quantum Hall physics. Spatial geometry is
described by a set of vielbeins, or frame fields, eAμ ¼ feA0 ≡
0; eAi g along with their “inverses” Eμ

A [40]. Here and
throughout we use μ, ν ¼ 0, 1, 2, and i, j ¼ 1, 2 to index
ambient spacetime and space, respectively, while A, B ¼ 1,
2 index flat internal space. The spatial metric gij is given as

gij ¼ eAi e
B
j δAB: ð1Þ

Parallel transport in spacetime is defined by demanding that
the vielbeins are covariantly constant, i.e.,

∇μeAν ¼ ∂μeAν − Γλ
μνeAλ þ ωA

μBe
B
ν ¼ 0; ð2Þ

where ∇μ is a covariant derivative with a spacetime index.
These equations define both a spin connection ωA

μB and a
Christoffel connection Γi

μj. The Christoffel connection can
be expressed in terms of derivatives of the metric, although
we do not need the explicit expression here. Solving Eq. (2)
for the spin connection, we find [41]

ω0 ¼
1

2
ϵA

BðEi
B∂0eAi Þ; ð3Þ
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ωk ¼
1

2
ϵA

BðEi
B∂keAi − Ei

Be
A
j Γ

j
kiÞ; ð4Þ

where we have defined the Abelian spin connection via
ωA
μB ≡ ϵB

Aωμ, where ϵB
A is the Levi-Civita tensor.

Lastly, we review the transformation laws for these
geometric fields. First, we note that the metric, the
vielbeins, and the spin connection all transform as tensors
under changes in the ambient coordinates (here we restrict
to transformations that leave time invariant). Next, since the
vielbeins are defined through the factorization Eq. (1), they
suffer an SOð2Þ gauge ambiguity

eAμ → eA
0

μ SA0A; Eμ
A → Eμ

A0SA
0
A; ð5Þ

for S ¼ expðiφϵÞ ∈ SOð2Þ; the spin connection transforms
under rotations as an Abelian gauge field

ωμ → ωμ þ ∂μφ: ð6Þ
Anisotropic geometry.—Anisotropy naturally arises in

condensed matter systems through symmetric rank two
tensors, such as the effective mass tensor or dielectric tensor
in crystals. Taking inspiration from this, we introduce
anisotropy into the quantum Hall system through a symmetric
tensor V, distinct from the spatial metric tensor g. To be
consistent, we must be careful to account for the difference
between spatial geometry—which we view as extrinsically
imposed—and anisotropy—which we view as intrinsic. Our
discussion here elaborates on and extends various observa-
tions made in Refs. [29,30] and is the first result of the Letter.
We choose a fairly general type of anisotropy para-

metrized by a quadrupolar background field VABðxÞ, which
we take to have internal SOð2Þ indices. We require that VAB

is symmetric and positive definite. We also define the
inverse matrix vAB satisfying

vABVBC ¼ δCA: ð7Þ
Without loss of generality we can fix detV ¼ 1; changes to
the determinant of V can be compensated by a uniform
rescaling of coordinates, which would not introduce any
anisotropy. In analogy with the spatial metric, we can
factorize V and v as

VAB ¼ ΛA
αΛB

β δ
αβ; vAB ¼ λαAλ

β
Bδαβ: ð8Þ

Note that the indices α, β ¼ 1, 2 appearing in Eq. (8) are a
new type of internal index. Rotations acting on this index are
a new gauge redundancy, distinct from the internal SOð2Þ
rotational symmetry of the previous section. In order to
distinguish between these two gauge groups, we refer to the

new redundancy in the description of anisotropy as cSOð2Þ.
It is natural to define an anisotropy metric

ĝij ≡ eAi e
B
j vAB ¼ δαβeAi λ

α
Ae

B
j λ

β
B ¼ δαβêαi ê

β
j ; ð9Þ

where we have introduced eAi λ
α
A ¼ êαi . We similarly define

the inverse

Ĝij ≡ Êi
AÊ

j
Bδ

AB: ð10Þ
With two metrics around, we must be careful to distinguish
between tensor fields and their inverses. We use the con-
vention that for the spatial metric only gijgjk ¼ δik. Spatial
indices are raised and lowered by this metric, while internal
indices A and α are both raised and lowered by δ symbols. It
would be a grave error to use ĝ or Ĝ to manipulate indices.
The anisotropy data ĝ and ê can be used to construct

connections and curvatures, just like their geometric relatives
from the previous section. Any description of an anisotropic
system in terms of ê with fully contracted indices will
automatically be spatially covariant. In particular, we may
define a hat-covariant derivative ∇̂ satisfying

∇̂μĝij ¼ 0; ∇̂μêαj ¼ 0: ð11Þ
This defines for us implicitly an affine connection Γ̂, as well
as an cSOð2Þ spin connection ω̂ given by replacing all factors
of the metric and vielbeins in Eqs. (3)–(4) with their hatted
cousins. Clearly, ω̂ transforms as an Abelian cSOð2Þ gauge
field under rotations in the internal fα; βg space, in analogy
with Eq. (6).
Given these two geometries, we define a matrix-valued

one-form Ci
μj,

Ci
μj ¼ Γi

μj − Γ̂i
μj: ð12Þ

We also define Cμ ¼ ϵi
jCi

jμ for future use. There are no
more independent objects.
The cohomology class (or, informally, the Chern num-

ber) χ̂ ¼ ½1=ð2πÞ� R dω̂ is not independent of the Euler
characteristic χ. We find

χ̂ ¼ 1

4π

Z

ffiffiffi

ĝ
p

R̂ ¼ χ þ Ndiscl; ð13Þ
for some integer Ndiscl. Indeed, taking VAB ¼ δAB we have
ω̂μ ¼ ωμ, and so χ̂ ¼ χ. On the other hand, when the metric
(can be and) is set to identity gij ¼ δij we find

Ndiscl ¼
1

2π

Z

dω̂jgij¼δij
; ð14Þ

where Ndiscl counts the number of singularities of the
anisotropic connection. When VAB comes from a nematic
order parameter, this integer is related to the number of
nematic disclination defects.
Anisotropic Chern-Simons theory.—We now consider a

generic Abelian, anisotropic one-component FQH system
in a curved space, coupled to a weak external electromag-
netic field. The low energy theory for such a phase is a
Uð1Þk Chern-Simons action coupled to our anisotropy
connections, with k ¼ 2pþ 1. Note that an anisotropy
tensor VAB can be generated dynamically from the interplay
between the dielectric tensor, band-mass curvature, in-
plane magnetic field, quadrupolar interactions, etc. The
only assumption we make is that such a VAB exists.
Although we are primarily interested in cases where the
spatial metric is flat or nearly flat, we must first formulate
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the theory in a general background, so as not to miss any
allowed couplings, or introduce prohibited ones.
Given our previous discussions, the most general low

energy effective action is [42]

S ¼ 2pþ 1

4π

Z

ada −
1

2π

Z

Ada; ð15Þ
where

Aμ ¼ Aμ þ sωμ þ ςω̂μ þ ξCμ: ð16Þ
The coefficients s and ςmust be quantized because ω and ω̂
are connections (as opposed to one-forms); however, ξ can
be an arbitrary function of the anisotropy. For small
anisotropy we expect ξ to be approximately independent
of the anisotropy, and we focus on this situation throughout
the remainder of the text. We note that a nonzero ξ
explicitly breaks the apparent symmetry between the
ambient and anisotropy metrics, and cannot be excluded
on the basis of effective field theory.
Supplementing the action (15) with an appropriate

gauge-fixing condition [8], we integrate out a to derive
the generating functional [43]

W ¼ ν

4π

Z

AdAþ νs
2π

Z

Adωþ νς

2π

Z

Adω̂þ νξ

2π

Z

AdC;

ð17Þ
where ν ¼ 1=ð2pþ 1Þ and we have dropped purely gravi-
tational terms. The electric charge density is given by

ρ ¼ ν

2π
Bþ νs

4π
Rþ νς

4π
R̂þ νξ

4π
ϵij∂iCj; ð18Þ

which implies the total particle number on a sphere

ν−1N ¼ Nϕ þ S þ ςNdiscl; ð19Þ
where S ¼ 2s̄ ¼ 2ðsþ ςÞ is the shift [1,21]. We see that
anisotropy provides a natural way to split the mean orbital
spin s̄ into two parts: one that comes from the geometric
spin and another one that couples to anisotropy. Thus we
refer to ς as anisospin by analogy. To remind the reader that
the anisospin bears a resemblance to the ordinary orbital
spin, we denote it by ς, the Greek “final sigma.”
Hall viscosity and response to anisotropy.—We next

consider the response of the stress tensor to applied strains,
defined from the generating functional as

τμA ¼ δW
δeAμ

¼ λμA
λ
BeBλ þ ημA

λ
B∂0eBλ : ð20Þ

We focus on the nondissipative Hall viscosity

ðηHÞμAλB ¼ 1

2
ðημAλB − ηλB

μ
AÞ: ð21Þ

In the rotationally invariant case, it has one independent
component ηH ¼ Sρ̄=4, proportional to the shift [19,22], and
the average density ρ̄. In the presence of anisotropy however,
two new—and in general nonuniversal—contributions to the
viscosity tensor emerge. To study these, we follow Haldane
and introduce the contracted Hall tensor [44,45]

ηHAB ¼ 1

2
ϵCDeA

0
μ eB

0
ν ϵA0AϵB0Bη

μ
C
ν
D: ð22Þ

From the generating functional Eq. (17) we find [46]

ηHAB ¼ ρ̄

2
½sδAB þ ςvAB þ ξðvACvCB − δABÞ�: ð23Þ

In the isotropic limit this reduces to ηHAB ¼ ηHδAB.We see that
the Hall viscosity and the shift are only proportional in the
special cases that either the anisotropy, or both ς and ξ, vanish.
The contributions from ξ and ς can be distinguished through
their scaling with V. In Supplemental Material [36], we use
the Kubo formalism to derive the Hall tensor ηH for a
microscopic model of noninteracting electrons with band-
mass anisotropy.
The anisospin ς can also be calculated independent of s via

the response to anisotropy. To see this, we define an
“anisotropy current” [30]

N A
α ¼ 1

2λ

δW
δλαA

; ð24Þ
where λ ¼ detðλαAÞ. Following the logic of Eqs. (17)–(23), we
find for the (contracted) oddpart of the response ofN to∂0λ

α
A,

ϑHAB ¼ ρ̄

2
ðςþ ξÞvAB: ð25Þ

Note that ϑHαβ contains only ς and ξ, but not s.
Anisospin for realistic systems.—Next, let us consider the

case where anisotropy enters through the band-mass tensor
m−1

ij , and through a distortion of the interaction potential.

H ¼ m−1
ij πiπj þUðjx − x0j; εijÞ; ð26Þ

where πi is the momentum (independent of the anisotropy)
and Uðjx − x0j; εijÞ is the Coulomb potential in a medium
with a homogeneous—but not necessarily isotropic—
dielectric tensor εij [47,48]. We assume that these tensors
are diagonal and unimodular, withm−1

ij ¼ diag½αm; ð1=αmÞ�
and εij ¼ diag½αε; ð1=αεÞ�.
To simplify the problem we can make a global coor-

dinate rescaling to move all of the anisotropy into the
interaction. We are then left in Eq. (23) with a single matrix
vij ¼ εikmkj ¼ diag½ðαε=αmÞ; ðαm=αεÞ�. Next, note that
each cyclotron orbit in the Nth Landau level carries orbital
angular momentum

sN ¼ ð2N − 1Þ=2 ð27Þ
about its guiding center, an effect that originates from the
now-isotropic kinetic term. Hence, for FQH states in the
Nth Landau level we expect for the geometric spin s ¼ sN .
This implies

ς ¼ SN=2 − sN; ð28Þ
where SN is the shift for the state in the Nth Landau level.
We see that the shift S decomposes into cyclotron and
interaction contributions.
Alternatively, we could have rescaled the interaction to

move the anisotropy into the band-mass tensor. This would
lead to a different matrix v0ij ¼ m−1

ik ε
−1
kj ¼ diag½ðαm=αεÞ;
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ðαε=αmÞ�. However, note that the anisotropy is a coordinate
on the real projective line RP1 ≈ S1, since the overall scale
of the Hamiltonian is unimportant. The two rescalings v and
v0 correspond to two different coordinate patches covering
RP1. In the first case the coordinate is α ¼ ðαm=αεÞ, while
in the second case it is α0 ¼ 1=α. Either coordinate choice is
valid away from the poles of RP1, and so both para-
metrizations produce equivalent results for all observable
quantities. The effect of moving all of the anisotropy into the
mass tensor results in swapping the values of s and ς, which
is consistent with the transformation law of the Hall tensor
Eq. (23) under coordinate rescalings.
Anisotropic momentum polarization.—We have numeri-

cally calculated the Hall viscosity for a variety of aniso-
tropic quantum Hall states produced from (26), using
DMRG on an infinite cylinder. In this geometry, the
Hall viscosity is related to the momentum polarization
Ppol, which is the additional momentum in the azimuthal
(x2) direction when the cylinder is cut in the x1 direction
[49–51]. For anisotropic systems,

Ppol ¼ −
ηH22
2π

L2 þOð1Þ: ð29Þ
The coefficient ηH22 is given by Eq. (23). For the anisotropic
systems considered here, the extensive part of the momen-
tum polarization depends on both the orbital spin s and the
anisospin ς. The Oð1Þ constant is related to the central
charge [50]; studying its response to the anisotropy is more
computationally demanding than the L2 term and is an
interesting direction for future work.
When a quantum Hall problem projected into a single

Landau level is written in a second-quantized basis, inter-
action anisotropy and mass anisotropy have an identical
effect on the matrix elements of the Hamiltonian, and
therefore lead to identical ground states in the orbital basis.
Therefore, we can test both types of anisotropy in (26) in a
single simulation. To compute momentum polarization from
these states we first compute the real space entanglement
spectrum (RSES) across the cut, and then average the
momentum eigenvalues of all the levels in the RSES,
weighted by their entanglement eigenvalues. The RSES
depends on the shapes of the single-particle orbitals (which
are modified by mass anisotropy but not by interaction
anisotropy), so the two types of anisotropies give different
results even though the orbital basis wave functions are
identical. Additionally, for interaction anisotropy we can
compute momentum polarization from Eq. (8b) of Ref. [50],
which for isotropic single-particle orbitals gives equivalent
results for less computational effort.
We compute the Hall viscosity by fitting the computed

momentum polarization vs circumference L for a number of
different system sizes. In Fig. 1we show results for the integer
quantum Hall effect with ν ¼ 1, 2, the Laughlin state with
ν ¼ 1=3, and the hierarchy state at ν ¼ 2=5. The solid curves
are fits to Eq. (23), where s and ς are given by Eqs. (27)

and (28), and ξ is allowed to vary. We find in all cases that the
best fit occurs for−0.1 ≤ ξ ≤ 0. Finite-circumference effects
introduce anisotropy-dependent oscillations in Ppol. The
values of ξ we extract may therefore be overestimates, since
they could reflect these systematic errors. Reducing these
finite-size effects would require larger bond dimensions and
would (with our present computational resources) simply
replace finite-size error with finite-bond-dimension error
(finite-bond-dimension error is very small in the data
we present). A finite-size scaling analysis (presented in
Supplemental Material [36]), suggests that ξ is small but
nonzero. We have also assumed that ξ is independent of λ,
though this is not required. This, alongwith finite-size effects,
may explain the deviations from the fit we observe at large
anisotropy in ν ¼ 1=3.
We thus see that the effect of anisotropy that couples only

to either the kinetic energy, or to the interaction potential, is
to split the contributions to the shift S into a single-particle
“Landau orbit” contribution, and a many-body “guiding
center” contribution. Such a splitting was first noted by
Haldane [45,52]. The values of s and ς obtained are precisely
those suggested in the previous section [53].
Conclusions.—We have introduced a framework for

studying the low energy properties of anisotropic quantum
Hall states. Using it, we constructed a family of low energy

FIG. 1. Hall viscosity ηH22 as a function of anisotropy α, for four
different quantum Hall states. Data are obtained by introducing
anisotropy into either the mass (blue squares) or interaction
(green circles) part of the Hamiltonian. The lines correspond to
Eq. (23), using the values of s and ς given in Eqs. (27) and (28),
but allowing ξ to fluctuate to fit the data. The value at α ¼ 1 is the
shift (SN). Data was obtained using system sizes L ¼ 10–20 and
bond dimensions up to 5400. The data are plotted such that in the
isotropic case they are equal to the shift.
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theories for anisotropic Abelian FQH states, and studied
their linear response. We have found a new quantized
topological number ς, dubbed anisposin, related to the
nondissipative linear response to anisotropy. We have shown
that in the presence of homogeneous anisotropy the relation
between the shift and the Hall viscosity is modified—while
the former remains quantized for any value of the anisotropy
(as long as it preserves the inversion symmetry), the Hall
viscosity is quantized only in the isotropic case.
We have numerically investigated the Hall viscosity of a

variety of quantum Hall states coupled to both band-mass
and interaction anisotropy. We have shown that the aniso-
spin for these systems realizes a splitting of the shift
between Landau orbit and interaction contributions, first
pointed out in Ref. [45].
We believe that our formalism will have many applica-

tions, including a detailed investigation of the dynamics of
gapped collective excitations in FQH systems, nematic
phase transitions, and “hidden” geometric degrees of
freedom [52]. The correspondence between anisotropy
and bimetric geometry allows one to construct anisotropic
CFT trial states and study corresponding Berry phases,
which we discuss in a forthcoming work. Finally, our
geometric description may help to build a bridge between
FQH physics and bimetric theories of massive gravity.
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