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We demonstrate the passive control of viscous flow in a channel by using an elastic arch embedded in the
flow. Depending on the fluid flux, the arch may “snap” between two states—constricting and
unconstricting—that differ in hydraulic conductivity by up to an order of magnitude. We use a combination
of experiments at a macroscopic scale and theory to study the constricting and unconstricting states, and
determine the critical flux required to transition between them. We show that such a device may be
precisely tuned for use in a range of applications, and, in particular, has potential as a passive microfluidic
fuse to prevent excessive fluxes in rigid-walled channels.
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Elastic elements are finding increasing utility in engi-
neering design, from aeronautics to architecture [1]. The
potential for passive control offered by morphable compo-
nents holds particular promise in microfluidics where a
library of design considerations to control the flow of fluid
exists, including the geometrical, chemical, and mechanical
characteristics of the channel [2]. Of these, many are fixed
at the design stage (e.g., the network connectivity) and are
difficult to change subsequently, while others can be
changed actively during operation. For example, the
Quake valve [3,4] allows flow in a primary channel to
be blocked off by inflating control channels. Channel
flexibility has been exploited to control flows by bending
the device [5], applying a varying potential difference to
create a microfluidic pump [6] or simply by turning
mechanical screws to constrict flow [7].
The above examples have two features in common: they

are actively controlled and generate a smoothly transition-
ing fluid flow. However, this active control may mean that
miniaturization becomes difficult if, for example, additional
power sources are required. Passive control, the ability of a
flow to self-regulate, is then desirable, and has led to the
development of passive pumps in microfluidic devices
[8,9]. In other circumstances, a rapid and switchlike
response may also be useful, for example, as a logic
element in microfluidic circuits [10], in fluidic gating
[11], or as a fuse to limit the fluid flux within a channel
to some predetermined maximum.
Elastic snap-through, in which a system rapidly transi-

tions from one state to another (just as an umbrella rapidly
inverts in high winds), is a natural candidate for such a
passive control mechanism: snap-through is generally fast,
repeatable, and provides a large shape change. Snap-through
has been harnessed in biology and engineering to generate
fast motions between two states [12–16]. Previous studies
have focused on snapping due to dry, mechanical loads
including indentation [17], end rotation [18], and electro-
static forces [19], or capillary forces in wet systems [20].

However, snap-through caused by bulk fluid flow remains
relatively unexplored. Similarly, the use of elastic deforma-
tion to control fluid flows has largely focused on the
development of fluidic diodes and valves [4,8].
To illustrate the mechanics of snap-through and its

possible use to control flow, we performed macroscopic
experiments. Flow occurs in a channel of rectangular cross
section (width d ¼ 6 mm, depth b ¼ 23 mm) in which one
of the bounding walls is replaced by a flexible strip of
biaxially oriented polyethylene terephthalate film (Young’s
modulus E ¼ 5.72� 0.52 GPa). The rigid portion of the
channel was 3D-printed, with one of the walls fabricated
from transparent acrylic to visualize the flow-induced
deformation of the flexible element. The ends of the strip
were clamped parallel to the flow direction, a distance
L ¼ 50 mm apart, using thin notches built into the sur-
rounding channel walls [see Fig. 1(a)]. The bending stiff-
ness of the strip was varied by using different thicknesses
h ∈ f0.1; 0.25g mm [21].
A controlled volumetric flux, qin, of glycerol (viscosity

range 1.10 Pa s ≤ η ≤ 1.80 Pa s) was introduced using a
syringe pump (Harvard Apparatus PHD Ultra Standard
Infuse/Withdraw 70-3006). Next to the arch the (reduced)
Reynolds number is Re ¼ Oð10−2Þ so that fluid inertia is
negligible. We measured the fluid pressure at the upstream
end of the arch using a voltage-output pressure transducer
(OMEGA PX40-50BHG5V). We were able to accurately
measure pressures larger than 140 Pa with typical
uncertainty �20 Pa (due to uncertainties in the voltage
measurement).
A key geometric parameter is the relative height of the

arch in the absence of flow, w0, to the upstream channel
width d [Fig. 1(a)]. This arch height was varied within the
channel assembly by changing the length of the strip prior
to clamping. The difference between the natural length of
the strip, Lstrip, and the horizontal distance between the two
clamping points is referred to as the end-shortening
ΔL ¼ Lstrip − L ≪ L; for shallow arches ΔL is related
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to the arch amplitude by w0 ≈ 2ðLΔLÞ1=2=π [using the
Euler-buckling mode wðxÞ ¼ w0½1 − cosð2πx=LÞ�=2 [5]].
At the start of each experiment, the arch was placed in a

constricting state with its midpoint directed into the channel
[Fig. 1(a)]. To determine the dependence of the system
on the fluid flux, qin, this flux was ramped from 0
at a rate _qin ¼ 2 mLmin−2 (when h ¼ 0.1 mm) or
_qin ¼ 70 mLmin−2 (when h ¼ 0.25 mm). In both cases
the ratio of the convective time scale (Lbd=qin) to the

ramping time scale (qin= _qin) is Oð0.1Þ at the point of snap-
through—ramping occurs approximately quasistatically. A
digital camera mounted above the acrylic wall recorded the
shape of the arch and allowed the midpoint height w0 to be
measured to an accuracy �0.2 mm.
Snapshots of the arch shape as qin changes are shown in

Fig. 1(c) (for movies see [21]). As qin increases, the shape
of the arch changes only slightly at first, developing a small
asymmetry due to the pressure gradient that drives the flow.
However, at a critical value of qin the shape changes
dramatically: the arch suddenly adopts the opposite curva-
ture [last panel in Fig. 1(c)] and, if the flux qin is
subsequently reduced, the arch remains in this “snapped,”
unconstricting configuration.
To quantify the behavior of this flexible channel, we

measured the pressure at the upstream end of the arch,
pð0Þ, as a function of the imposed flux; results for different
initial arch heights are shown in Fig. 2(a). For small arch
heights, the pressure increases approximately linearly with
qin before snap-through, as would be expected for Poiseuille
flow in a rigid channel. However, for larger arch heights,
w0=d↗1, the contrast with Poiseuille flow becomes appar-
ent: the pressure changes nonlinearly with qin and is even
nonmonotonic, reaching a maximum prior to snapping
[Fig. 2(a)]. Over a large range of fluxes prior to snapping,
the channel therefore has a softening property whereby the
effective hydraulic conductivity, which we define as
k ¼ qin=pð0Þ, increases smoothly with increasing flux
[Fig. 2(c)].
Snap-through causes even more significant changes: the

pressure drops discontinuously, even though the flux has
increased, because the channel switches from a constricted
state to an unconstricted state. The contrast between the
channel conductivities in the two states is large and grows
as the arch height, w0, grows [Fig. 2(c)]. The system
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FIG. 2. Pressure-flux relations for a flexible channel (h ¼ 0.25 mm, η ¼ 1.60� 0.10 Pa s). (a) Evolution of the upstream pressure,
pð0Þ, for different channel blocking parameters W0 ¼ w0=d (indicated by the colorbar). For each W0, three data sets through the
snapping transition are shown, together with a fourth in which the arch remains in the snapped configuration throughout (symbols).
Predictions from the beam-lubrication model, (6), are also shown (solid curves). (The snapping transition appears continuous in
experiments because the arch motion is overdamped.) (b) The hysteresis loop highlighted for intermediate W0. (c) The effective
hydraulic conductivity k ¼ qin=pð0Þ is plotted for the same data (with pð0Þ > 140 Pa, to avoid noise due to inaccurate readings at low
pressure).
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FIG. 1. Viscous flow through a channel containing a flexible
wall. (a) A thin elastic strip, buckled into an arch, initially
constricts part of a channel (red shape). At higher flow rates,
the arch rapidly snaps through (blue shape); the flow is then
unconstricted and the channel’s conductivity increases. (b) Three-
dimensional view showing the finite channel depth. (c) Shapes
of the arch during a snapping experiment (h ¼ 0.25 mm,
w0 ¼ 4.7 mm, η ¼ 1.60� 0.10 Pa s), together with the shapes
predicted by our beam-lubrication model (red dashed curves).
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exhibits hysteresis since the snapped configuration remains
stable if qin is decreased [Fig. 2(b)].
A key quantity of interest is the critical flux,qsnap, at which

snap-through occurs; Fig. 3 (inset) shows that this depends
not only on the arch height, w0, but also on the flexibility of
the arch and the liquid’s properties. Surprisingly, we find that
the value of qsnap is a nonmonotonic function of arch height:
for given material parameters, a maximum value of qsnap is
obtained at w0=d ≈ 0.5.
To gain theoretical insight we first note that the deflec-

tion δ of an elastic strip, of length L and bending stiffness
B, due to a force F (per unit length) scales as δ ∼ FL3=B
[26]. Here the typical force F ∼ pL, where p is the fluid
pressure, and hence the induced deformation
δflow ∼ pL4=B. The Poiseuille law [27] for the pressure
drop along a slender channel of width d and depth b, with
an obstruction of maximum size wmax, suggests that
p ∼ ηLqin=½bðd − wmaxÞ3�. This pressure estimate then
gives δflow ∼ ηL5qin=½Bbðd − wmaxÞ3�, which may be com-
pared with the initial arch height w0 to estimate the
threshold flux for snap-through (analogously to point
indentation [17]) as

qsnap ∼
Bbðd − wmaxÞ3

ηL5
w0: ð1Þ

This may be written in terms of the channel blocking
parameter, W0 ¼ w0=d, as

Qsnap ∼W0

�
1 −

wmax

d

�
3

; ð2Þ

where a dimensionless fluid flux is

Q ¼ ηL5

Bbd4
qin: ð3Þ

This nondimensionalization provides an excellent collapse
of the experimental data onto a single master curve (Fig. 3).
Moreover, the nonmonotonic behavior observed in Fig. 3 is
qualitatively explained by (2): for small channel blocking
parameter, W0 ¼ w0=d ≪ 1, the maximum arch displace-
ment wmax ≪ d, and hence Qsnap ∼W0. However, when
wmax becomes comparable to the channel width d (W0↗1),
Qsnap decreases.
To go beyond these scaling arguments, we formulate a

model coupling the shape of the arch with the fluid pressure
by exploiting the thin-film geometry and the shallow slope
of the arch. This allows us to use the one-dimensional linear
beam equation [28]

B
d4w
dx4

þ T
d2w
dx2

þ pðxÞ ¼ 0; 0 < x < L; ð4Þ

to describe the transverse displacement, wðxÞ, of the arch,
with T being the compressive force in the arch, and pðxÞ
the hydrodynamic pressure. (An analysis of the shear stress
exerted on the arch by the fluid shows [29] that the
compressive force T is spatially uniform provided that
jdw=dxj ≪ 1, as already assumed in using the linear beam
equation.) Assuming that the strip is inextensible [17], the
imposed end-shortening ΔL leads to the constraint

Z
L

0

�
dw
dx

�
2

dx ¼ 2ΔL: ð5Þ

The ends of the arch, at x ¼ 0 and x ¼ L, are clamped, i.e.,
wð0Þ ¼ w0ð0Þ ¼ wðLÞ ¼ w0ðLÞ ¼ 0 (with primes denoting
differentiation with respect to x).
To determine the pressure within the liquid, pðxÞ, we use

lubrication theory [30], consistent with our assumption of
small slopes, jdw=dxj ≪ 1. Using standard methods, the
pressure may be expressed [21] as

pðxÞ ¼ pðLÞ þ 12ηqin
b

Z
L

x

K(wðξÞ)
½d − wðξÞ�3 dξ; ð6Þ

where we use a geometric correction factor [2,27],

KðwÞ ¼
�
1–6

�
2

π

�
5 d − w

b

�
−1
;
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FIG. 3. Critical flux for snap-through. Inset: Experimentally
measured snap-through flux, qsnap (averaged over three runs), as a
function of the initial midpoint height, w0. Data are shown for
h ¼ 0.25 mm with η ¼ 1.38� 0.17 Pa s (blue circles) and η ¼
1.61� 0.18 Pa s (red squares); and for h ¼ 0.1 mm with η ¼
1.20� 0.10 Pa s (green diamonds) and η ¼ 1.33� 0.08 Pa s
(magenta triangles, increasing qin in steps of 0.25 mLmin−1

every minute rather than ramping). Horizontal error bars corre-
spond to the �0.2 mm uncertainty in w0; vertical error bars give
the standard deviation of the measured values. Main plot:
Rescaling to plot the dimensionless flux Qsnap ¼ ηL5qsnap=
ðBbd4Þ in terms of the channel blocking parameter W0 ¼
w0=d; the data collapse onto the prediction of our numerical
analysis (solid black curve). Vertical error bars here also account
for uncertainties in the bending stiffness B and viscosity η. Also
plotted is the asymptotic result Qsnap ≈ 16W0 valid for W0 ≪ 1

[21] (black dotted line).

PRL 119, 144502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

144502-3



to account for the finite depth of the channel. The pressure
at the downstream end of the arch depends on the down-
stream geometry of the channel [denoted with subscript d,
as in Fig. 1(a)] and is given by

pðLÞ ¼ 12ηqinLd

bdd3d

�
1–6

�
2

π

�
5 dd
bd

�
−1
;

measured relative to the ambient pressure (which is
imposed at the end of the channel, x ¼ Lþ Ld).
We introduce the dimensionless variables X ¼ x=L,

W ¼ w=d, and P ¼ p=p�, where p� ¼ Bd=L4 is the
pressure scale introduced by the beam equation (4).
With this nondimensionalization, there are two key gov-
erning parameters: the dimensionless flux Q, defined
in (3), and the channel blocking parameter W0 ¼ w0=d≈
2ðLΔLÞ1=2=ðπdÞ.
The dimensionless versions of Eqs. (4)–(6) may be

solved for given values of W0 and Q to determine both
the arch shape and the dimensionless pressure field, PðXÞ.
Predicted arch shapes are shown in Fig. 1(c), superimposed
on the experimentally observed shapes; the agreement
between theory and experiment is very good for all values
of Q investigated, including beyond the snap-through
transition. The discrepancy is largest close to snap-through
[third panel of Fig. 1(c)], since the sensitivity to the precise
value of Q is largest here. The predicted (dimensional)
upstream pressure pð0Þ is shown in Figs. 2(a) and 2(b),
with corresponding conductivities k ¼ qin=pð0Þ plotted in
Fig. 2(c); both generally agree well with experiment (errors
in the conductivity at low fluxes are due to uncertainties in
the measurement of low pressures). Close to total blocking,
W0 ≈ 1, there is a systematic error in the model, which we
attribute to the relatively large arch slopes at the midpoint
that are not captured by our use of lubrication and linear
beam theories. Nevertheless, the model captures the quali-
tative behavior of the pressure throughout, including the
nonmonotonicity of pð0Þ as a function of qin.
A numerical analysis of the problem shows [21] that the

snap-through transition is a saddle-node bifurcation: the
constricting state ceases to exist at a critical value Q ¼
Qsnap without first becoming unstable [17]. The numeri-
cally determined value of QsnapðW0Þ reproduces the exper-
imentally determined master curve; see Fig. 3. For
W0 ≪ 1, an asymptotic analysis shows that Qsnap≈
16W0, reproducing the linear scaling of (2). For
0.1≲W0 ≤ 1, we find that Qsnap varies by less than a
factor of 2, with 2≲Qsnap ≲ 4.
The system we have presented is irreversible—post

snapping the strip cannot return to the constricting state
without direct intervention. However, this is not a funda-
mental feature: reversibility may be accomplished by
introducing flow in an access channel to the region below
the arch, to snap the arch back to its original position (see,
e.g., [11]). Alternatively, an automatic reset, which may be

desirable in some applications, may be easily achieved by
clamping one end of the arch at an angle to the horizontal
[18,31] so that the snapped configuration is not in equi-
librium in the absence of flow. In this case, the system
exhibits a hysteresis loop with an increase in the input flux
generating a snap in one direction, and a subsequent
(further) decrease in flux causing a snap back (see
Fig. S6 of [21]).
In both the irreversible and reversible scenarios, the

quantitative features of the mechanism (e.g., the critical
snapping fluxes and the corresponding change in conduc-
tivity) may be precisely tuned. Therefore, with an arch
element coupled to other components, a range of design
possibilities opens up. For example, in Fig. 4 we demon-
strate the potential for a passive fluid fuse. Here we have
placed an arch element in parallel with another, entirely
rigid, channel [Fig. 4 inset]. Denoting the (constant)
effective hydraulic conductivity of the rigid channel by
kr, and the (variable) conductivity of the flexible channel
by kfðqfÞ, the ratio of the fluxes through each of the two
channels is qr=qf ¼ kr=kf by the Poiseuille law.
Denoting the total flux qtotal ¼ qf þ qr and calculating

qr=qtotal, the fraction of the total flux that passes through
the rigid channel, we find a switchlike response (Fig. 4):
while the arch is in a constricting shape, most of the fluid
passes through the rigid channel, but once the arch snaps,
much of the fluid is diverted to the now unconstricted
flexible channel. The rigid channel is effectively “short-
circuited.” The efficiency of the fuse, defined as the

10-2 100 102
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FIG. 4. Flow limiting using snap-through. Inset: A channel with
a flexible wall is connected in parallel to a rigid channel of
constant conductivity (schematics not drawn to scale). Main
figure: For low total fluxes Qtotal ¼ ηL5qtotal=ðBbd4Þ with the
flexible channel constricting (red curves), almost all of the flow is
directed through the rigid channel, i.e., qr=qtotal ≈ 1. This is
diverted through the flexible channel as soon as the arch snaps
(blue curves). Here W0 ¼ 0.99 and numerical results are shown
for different conductivity ratios λ between the channels: λ ¼ 10−2

(solid curves), λ ¼ 10−1 (dashed curves), and λ ¼ 1 (dotted
curves).
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decrease in qr caused by snap-through divided by its value
prior to snap-through, may be tuned by varying the geo-
metric parameters of each channel [21].
We have shown at a laboratory scale that the pressure

gradient associated with a viscous flow can be used to cause
snap-through of an embedded elastic element. The system
considered has a number of novel flow properties including
a highly nonlinear pressure-flux relationship, discontinuous
conductivity, and history dependence. These properties
may find application in microfluidic systems such as cell
sorting or, as we have shown, provide a means to protect
microfluidic systems from high fluxes. Similarly, the
discontinuous transition we observe is similar to that seen
in capillary burst valves [32] and gas release valves [33]. A
simple analysis [21] shows that when scaling down to the
microscale, the expected range of snap-through fluxes is
well within experimentally obtainable values. For such
applications our study thus provides a first analysis of flow-
induced snapping and guidance for choosing material
parameters to tune the critical flux. While viscous flow
control is readily applicable to microfluidics, the passive
control and rapid transition capabilities of elastic materials
is increasingly being exploited more broadly, e.g., in soft
robotics and morphing skins [16,34]. Developing theoreti-
cal models that provide intuition and facilitate device
optimization is critical in these burgeoning fields of
technology.
The experimental and numerical data used to generate

the plots within this paper are available from [35].
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