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Using an elastodynamic boundary integral formulation coupled with a cohesive model, we study the
problem of a dynamic rupture front propagating along an heterogeneous plane. We show that small-scale
heterogeneities facilitate the supershear transition of a mode-II crack. The elastic pulses radiated during
front accelerations explain how microscopic variations of fracture toughness change the macroscopic
rupture dynamics. Perturbations of dynamic fronts are then systematically studied with different
microstructures and loading conditions. The process zone size is the intrinsic length scale controlling
heterogeneous dynamic rupture. The ratio of this length scale to asperity size is proposed as an indicator to
transition from quasihomogeneous to heterogeneous fracture. Moreover, we discuss how the shortening of
the process zone size with increasing crack speed brings the front to interact with smaller details of the
microstructure. This study shines new light on recent experiments reporting perturbations of dynamic
rupture fronts, which intensify with crack propagation speed.
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Introduction.—Our modern understanding of fracture
arose from Griffith [1] and Irwin [2] which viewed crack
propagation as a thermodynamic process where, at equilib-
rium, the energetic cost of creating new surfaces in the
material is balanced by the release of strain energy sub-
sequent to crack advance. This theoretical framework known
as linear elastic fracture mechanics (LEFM) has been
successfully used over the last 50 years to predict the stability
of flaws in engineering materials. Consequently LEFM was
extended to cracked bodies far from equilibrium, i.e., to
dynamic fracture mechanics [3,4]. Experiments on brittle
solids showed that this dynamic theory of fracture gives good
prediction for slow crack propagation but is unsuitable to
describe fast rupture events where the crack front speed is a
significant fraction of material shear wave speed cs. In
particular, linear elastic theory overestimates the propagation
speed and significantly underestimates the dissipated energy.
For a review of dynamic fracture experiments, the reader is
referred to [5–9]. A three-stage transition is universally
observed within brittle materials, usually referred to as
“mirror,” “mist,” and “hackle” in reference to the postmortem
appearance of fracture surface. At low rupture velocity,
fracture surfaces are planar and smooth (mirror) and crack
dynamics is thereby well predicted by LEFM theory. As
crack speed increases, the rupture remains in plane but
fracture surface roughens (mist), followed by a stage char-
acterized by the formation of out-of-plane microbranches
(hackle), and finally the onset of macroscopic branching.
This transition observed in various brittle materials [7,10]
and at different scales [11,12] explains how linear elasticity
fails at describing fast rupture events where the front starts to
interplaywith themicrostructure and/or dynamic instabilities

and becomes a heterogeneous fracture problem [13–16]. An
extension of LEFM to heterogeneous problems was pro-
posed by Rice [17] and Gao and Rice [18] who gave a first-
order estimation of the stress intensity perturbation caused by
crack front distortion in presence of tougher asperities.
Recently, Ponson [19] reviewed how this approach can
successfully predict the roughness of slow rupture front in
brittle disordered material as long as crack front can be
viewed as a unique elastic line. The complex mechanisms
driving fast crack propagation occur however at a smaller
scale where fracture develops along a finite length. In this
context, numericalmodels have a great potential to bring new
insight on the interaction of a dynamic front with material
heterogeneities. However, the small spatiotemporal scales
characterizing this process require a very fine discretization
of the fracture plane and explain why dynamic hetero-
geneous fracture remains overlooked.
In this manuscript, we investigate the interaction of a

dynamic rupture front with small-scale heterogeneities. The
objective is to understand how rupture dynamics is per-
turbed when the average fracture properties are identical
but their statistical distribution changes. The rupture is
assumed to propagate along a weak interface under mode-II
plane strain conditions. This heterogeneous fracture prob-
lem is solved using a boundary integral formulation of the
elastodynamics equation proposed by Breitenfeld and
Geubelle [20]. This approach, initially developed by
Geubelle and Rice [21], allows an extremely fine discre-
tization of the fracture plane associated with a prescribed
cohesive model, particularly suited to describe phenomena
occurring in the immediate vicinity of dynamic crack
tips [22].
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Problem description: Geometry and elastodynamics.—
Let us consider two semi-infinite linearly elastic solids
under plane strain conditions with the top (y > 0) and
bottom (y < 0) displacements fields respectively denoted
by uþðx; y; tÞ and u−ðx; y; tÞ. Along the interface (y ¼ 0),
the two half spaces are initially bounded in static equili-
brium under a uniform in-plane shear (mode-II) loading τ0.
The initial conditions can then be summarized as

_uþðx; y; t ¼ 0Þ ¼ _u−ðx; y; t ¼ 0Þ ¼ 0;

σþxyðx; y; t ¼ 0Þ ¼ σ−xyðx; y; t ¼ 0Þ ¼ τ0; ð1Þ

with _u ¼ ð∂u=∂tÞ andσ theCauchy stress tensor. Because of
the spectral nature of the numerical schemewhich is based on
a Fourier series representation of the interface quantities, the
domain of interest is periodic with period X, i.e.,
uð0; y; tÞ ¼ uðX; y; tÞ. At time t ¼ 0, a crack of length a
is inserted at the left corner of the domain and starts to grow
dynamically in the right directionwhile left tip propagation is
prevented. Crack propagation is studied while a < 2

3
X to

neglect the effect of periodic boundary conditions. Figure 1
illustrates the studied brittle fracture process, which is
constrained to the interface (y ¼ 0). Across the interface,
the displacement discontinuity is defined as

δðx; tÞ ¼ uþðx; y ¼ 0þ; tÞ − u−ðx; y ¼ 0−; tÞ: ð2Þ

The interface resists crack motion with GH
c , which corre-

sponds to twice the material surface energy and is named
toughness in this manuscript. Far from the initiation site
(x > Lhom), the toughness presents dispersion in the ideal-
ized form of constant width w stripes alternately weaker
(Gweak

c < GH
c ) and tougher (G

strong
c > GH

c ). This arrangement
of asperities is designed to keep the macroscopic fracture
toughness unchanged: hGci ¼ 0.5ðGweak

c þ Gstrong
c Þ ¼ GH

c .
Plane strain conditions prevent any crack front distortions

during failure and the straight crack front successively breaks
this array of asperities.
Problem description: Numerical scheme.—The dynamic

fracture problem is solved with the aid of the spectral
scheme [20,21], a spectral form of the elastodynamic
boundary integral relations between the displacements
u� along the fracture plane and the corresponding traction
stress τðx; tÞ. The numerical method allows for a detailed
description of the evolution of the displacements, veloc-
ities, and traction stresses along the interface, especially in
the failure zone captured with the aid of a cohesive failure
model relating the displacement jump in the slip direction,
δx, and the interface strength

τstrðx; tÞ ¼ τcðxÞf1 − δxðx; tÞ=δcðxÞg: ð3Þ

In (3), τc and δc respectively denote the failure strength and
critical slip, and fξg ¼ ξ if ξ > 0 and 0 otherwise. The
corresponding value of the toughness is GcðxÞ ¼
1
2
τcðxÞδcðxÞ. The interface is typically discretized with

65 536 nodes in the simulations presented hereafter. Details
about the numerical method are provided to the reader as
Supplemental Material [23].
Problem description: Material properties and fracture

initiation.—The material and failure properties are given to
the reader in [23] for the sake of reproducibility, but the
conclusions drawn in the manuscript are independent from
this choice and results are hereafter presented in adimen-
sional scales. Based on the expression of the stress intensity
factor KII ¼ τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πða=2Þp

for static shear-loaded crack in an
infinite medium with Young’s modulus E and Poisson’s
ratio ν [2,24], we compute the critical crack size Lc
satisfying Griffith’s failure criterion:

Lc ¼
2K2

II

πτ20
¼ 2GH

c

πτ20

E
ð1 − ν2Þ ¼

τHc δc
πτ20

E
ð1 − ν2Þ ; ð4Þ

often referred to as Griffith crack length [25]. Rupture is
initiated in this work by slowly growing an infinitesimal
crack to its critical length a≃ Lc and dynamic rupture
begins (t ¼ 0) when it starts to grow spontaneously.
The effect of heterogeneous microstructure.—We start

our study with the rupture of a perfectly homogeneous
interface (Lhet ¼ 0) initially at rest with τ0 ¼ 0.22τHc . As
predicted by the crack tip equation of motion [4], the
constant loading makes the crack continuously accelerate
up to the upper limit represented by the Rayleigh wave
speed cR [Fig. 2(a)]. While keeping the same system on
average, we increase its statistical dispersion after Lhom ¼
2Lc by introducing stripes of weaker (τweakc ¼ 1

3
τHc ) and

stronger (τstrongc ¼ 5
3
τHc ) heterogeneities of width w ¼ 0.6Lc

according to Fig. 1. This heterogeneous microstructure
leads, however, to a dramatic change in rupture dynamics,
which is presented in Fig. 2(b). After a first propagation
phase at a sub-Rayleigh regime x=Lc < 15, the rupture

FIG. 1. Geometry of the in-plane heterogeneous fracture
problem. A crack of length a is inserted along an interface with
constant macroscopic toughness GH

c at rest under a uniform shear
loading τ0. The interface is made of a homogeneous portion Lhom
and a region with a heterogeneous toughness Lhet in form of
alternately weaker (yellow)/tougher (orange) stripes of constant
width w.
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front is able to exceed the Rayleigh wave speed and cs (see
[23] for additional representations of these rupture events).
The supershear transition of mode-II crack is fundamental
in the understanding of earthquake dynamics [26–28] and
several works [25,29–33] studied how a propagating front
may eventually get supershear; the time-growing pulse
radiated ahead of an accelerating shear crack causes the
nucleation of a secondary supershear front if its maximum
amplitude exceeds interface strength. For a rupture growing
from a ¼ Lc, Andrews [25] was the first to report how this
transition occurs at a specific crack size, which depends on
the initial ratio between interface strength and prestress, the
so-called seismic ratio S ¼ ðτHc − τ0Þ=τ0. Following the
same formalism, Fig. 3 summarizes our quantitative study

of this supershear criterion for different loading conditions
and toughness distributions. With a plane strain homo-
geneous setup, we meet the transition dynamics reported in
the literature [25,34]. The comparison with the hetero-
geneous setup reveals how increasing the microscopic
toughness dispersion facilitates the supershear transition
by both extending the limiting seismic ratio and reducing
the required transition length. The explanation is found in
the increase of elastic radiations caused by the hetero-
geneous microstructure. During homogeneous rupture, the
slip velocities profile is smooth and high velocities are
concentrated within the process zone. In the presence of
heterogeneities, elastic waves are continuously emitted
from the propagating tip resulting in a succession of pulses
visible in the slip velocity profile. The inset of Fig. 2(b)
presents a collective mechanism where the rupture of
tougher asperities creates waves which are later helping
the rupture of the neighboring asperities. Supershear
transition caused by a favorable heterogeneity has been
reported in several works in the context of earthquake
dynamics in the presence of heterogeneous prestress or
toughness along the slip plane [30,35–37] or with off-fault
elastic heterogeneity [38,39]. Following this benchmark
problem of dynamic fracture, our study reveals how a
collective mechanism occurring at the smaller scale of an
heterogeneous interface can deeply impact the macroscopic
rupture dynamics. Moreover, Fig. 3 emphasizes the impor-
tance of the details of microscale properties which are
systematically discussed in the next section.
Transition from homogeneous to heterogeneous

fracture.—In the system considered, two parameters char-
acterize the heterogeneity of the interface: the size w of the
asperities and the toughness contrast Gstrong

c =Gweak
c . The

rupture speed is another important parameter, which con-
stantly increases in the preceding simulations because of
the load-controlled setup. After an identical smooth ini-
tiation, a progressively decaying loading τ0ðaÞ allows for
crack growth at a constant speed along a perfectly homo-
geneous interface (K-controlled setup). The same loading

(a) (b)

FIG. 2. Space-time diagrams of two macroscopically equivalent dynamic fracture events where the normalized slip velocity _δx=cs is
shown using the same color scale while the crack tip position at a1 ¼ 5Lc and a2 ¼ 20Lc is highlighted with cyan stars. In (a) the crack
grows on a perfectly homogeneous interface, while in (b) the rupture front interacts with smaller-scale heterogeneities.

FIG. 3. Effect of heterogeneities on the supershear transition.
Color curves trace the observed boundary between sub-Rayleigh
and supershear regimes for different loading conditions (seismic
ratio) and toughness distribution. The dashed arrow draws the
trajectory of ruptures of Fig. 2 where the crack is initially in the
sub-Rayleigh regime (cyan star at a1 ¼ 5Lc) and grows toward a
size (cyan star at a2 ¼ 20Lc) where it either crosses the boundary
toward supershear regime [as in the interface of Fig. 2(b) with
w ¼ 0.6Lc], or not [as in the homogeneous interface of Fig. 2(a)].
The dark blue star shows the maximum seismic ratio allowing
supershear crack in homogeneous plane strains interface [25,34].
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conditions are further replicated to rupture fronts meeting
an heterogeneous region far from the initiation site
(Lhom ¼ Lhet ¼ 5Lc). As described in the previous section
[see Fig. 2(b)], one signature of the interplay of dynamic
crack front with heterogeneities is the slip pulses emitted
during the successive front accelerations. We measure and
compare then the maximum slip velocity maxf_δxg observed
when the front breaks the heterogeneous region and compare
it to the value measured when the interface is perfectly
homogeneous maxf_δHx g. The normalized increase in slip
velocity

Φ
�
w;

Gstrong
c

Gweak
c

�
¼ maxf_δxg −maxf_δHx g

maxf_δHx g
ð5Þ

is then used as an indicator of crack front perturbation for a
given heterogeneous microstructure. A progressive increase
of slip velocities is observed when increasing the toughness
ratio between weaker and stronger asperities. However, when
changing the size of the asperities, the evolution of Φ is not
monotonic and depends on a critical asperity size. The width
of the process zone, lcoh, namely the distance over which the
interface evolves from intact to broken, is the characteristic
length scale emerging from this K-controlled setup.
Figure 4(a) presents how the increase in slip velocity
measured with different asperity sizes and toughness ratios
collapses after being normalized by the size of the process
zone (data before normalization are available in [23]). Three
characteristic behaviors emerge from this normalization.
When w ∼ lcoh [Fig. 4(c)], the heterogeneous interface
develops a collective mechanism similar to the one discussed
in Fig. 2(b) and leads to a significant perturbation of the
rupture dynamics. The effect of heterogeneities quickly
decays as w < lcoh. When several weaker and stronger
heterogeneities are contained within the process zone
[Fig. 4(b)], their fracture properties are averaged and homog-
enized resulting in a rupture dynamics identical to the

perfectly homogeneous setup. Finally when w ≫ lcoh, the
collective interaction between asperities ceases as the elastic
waves have time to dissipate within the bulk between two
depinning events. In this macroscopically heterogeneous
interface, lcoh stops characterizing the rupture dynamics
which meets the predictions of the singular fracture theory
where the crack speed instantaneously adapts to a change in
fracture toughness [Fig. 4(d)]. These characteristic behaviors
controlled by the process zone size are universally observed
with different types of heterogeneityGstrong

c =Gweak
c [Fig. 4(a)]

as well as different crack front speeds (inset of Fig. 5).
Process zone size in dynamic fracture.—At the very

vicinity of crack tip, one should admit a region, the process

(a) (b) (c) (d)

FIG. 4. The process zone size is the length scale controlling crack front interaction with heterogeneities. For v ¼ 0.5cs and a toughness
ratio of 3.5, colors in plots (b)–(d) divide broken surface (sky blue), cohesive zone (blue), and intact interface which is either dark blue
(average properties), yellow (weaker properties), or orange (tougher properties). (a) Normalized increase of slip velocity as a function of
interface heterogeneity, namely, asperity size and toughness ratio for v ¼ 0.5cs. (b) Asperities are much smaller than lcoh leading to
quasihomogeneous dynamics. (c) Collective interaction between depinning events when w is in the range of lcoh leading to a significant
impact on rupture dynamics. (d) When the asperities are much larger than lcoh, the material is macroscopically heterogeneous.

FIG. 5. Faster crack fronts interact with smaller heterogeneities.
The main plot details how the process zone size contracts as the
crack accelerates toward cR. Cyan dots show simulation data
compared with the theoretical prediction in yellow (details are
provided in [23]). The inset shows the increase of slip velocity as
function of asperity size for Gstrong

c =Gweak
c ¼ 3.5 and different

crack speeds using lcohðvÞ for normalization to collapse data.
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zone, where nonlinear dissipative processes are regulariz-
ing the square root singularity. The nature of these non-
linear processes is far from being understood and should
certainly be highly dependent on the material. Cohesive
models arose from Dugdale [40] and Barenblatt [41]
approaches which propose an elegant way of modeling
these processes without losing the universality of LEFM
theory. In this nonsingular framework, lcoh scales as

�
KII

τHc

�
2

∼ l�coh ¼
GH

c

ðτHc Þ2
E

ð1 − ν2Þ ¼
1

2

δc
τHc

E
ð1 − ν2Þ ; ð6Þ

for a crack at equilibrium with the linear slip-weakening
law of Eq. (3). Within the K-controlled setup, the process
zone has then a constant size along the homogeneous
portion of the interface as highlighted in Figs. 4(b)–4(d).
We thereby measured its length at different rupture speeds
in Fig. 5 and observed a shrinkage of lcoh as v increased.
This relativistic process zone contraction as v approaches
the information speed is indeed predicted theoretically
[42–44] and was recently measured in experiments [45].
lcoh is even expected to be infinitely small when v approaches
cR. The fine level of discretization provided by the boundary
element model enables us to capture this process zone
contraction. Since lcoh is the characteristic length governing
the interaction of crack front with material heterogeneities, its
contraction implies that faster cracks are perturbed by smaller
heterogeneities or defects along their path.
Discussion.—Taking advantage of the fine discretization

allowed by the boundary integral formulation [20], we
investigate numerically the interplay of a dynamic crack
front with heterogeneities. A planar straight crack under
plane strain conditions interplays with an idealized micro-
structure made of equispaced stripes of weaker and stronger
areas. We reveal a complex mechanism where the nucle-
ation and coalescence of crack fronts within the hetero-
geneous microstructure radiates elastic waves helping the
rupture of neighboring asperities. This collective process
occurring at the scale of the heterogeneous microstructure
directly changes the macroscopic dynamics and facilitates
the supershear transition. We present then how the size of
the process zone is the length scale characterizing the
perturbation of a dynamic front by material heterogeneities.
This observation was confirmed with different sub-
Rayleigh front speeds and heterogeneous microstructures.
Moreover, the process zone size decreases with the crack
velocity, shrinking to zero as v approaches cR. As the
rupture front accelerates toward cR, it interacts therefore
with smaller material heterogeneities (asperities, defects).
We suggest that this process zone contraction amplifies
thereby the dynamic instabilities and roughens the fracture
surface of an accelerating crack front. This study shines a
new light on the interplay between a dynamic rupture front
and the material-heterogeneity length scales. The observa-
tions and conclusions drawn in this manuscript have direct

implications in the understanding of earthquake dynamics
[26,28,31] (supershear rupture) as well as the evolution
observed in the fracture behavior of materials with increas-
ing rupture speed [10,13,16] (interaction of crack with
defects or microstructures, dynamic instabilities).
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