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Laser linewidth is of central importance in spectroscopy, frequency metrology, and all applications of
lasers requiring high coherence. It is also of fundamental importance, because the Schawlow-Townes laser
linewidth limit is of quantum origin. Recently, a theory of stimulated Brillouin laser (SBL) linewidth has
been reported. While the SBL linewidth formula exhibits power and optical Q factor dependences that are
identical to the Schawlow-Townes formula, a source of noise not present in conventional lasers, phonon
occupancy of the Brillouin mechanical mode is predicted to be the dominant SBL linewidth contribution.
Moreover, the quantum limit of the SBL linewidth is predicted to be twice the Schawlow-Townes limit on
account of phonon participation. To help confirm this theory the SBL fundamental linewidth is measured at
cryogenic temperatures in a silica microresonator. Its temperature dependence and the SBL linewidth
theory are combined to predict the number of thermomechanical quanta at three temperatures. The result
agrees with the Bose-Einstein phonon occupancy of the microwave-rate Brillouin mode in support of the
SBL linewidth theory prediction.
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Stimulated Brillouin scattering (SBS) is a third-order
(χ3) optical nonlinearity that results from the interaction
between photons and acoustic phonons in a medium [1–4].
SBS has practical importance in optical fiber systems [5,6]
where it is an important signal impairment mechanism in
long-distance transmission systems [7] and makes possible
all-fiber lasers [8] as well as tunable, slow-light generation
[9]. Power fluctuation resulting from thermal phonons has
also been studied in fiber-optic SBS Stokes wave gener-
ation [10], and the intensity and phase noise have been
measured in narrow-linewidth Brillouin lasers [11]. More
recently, the SBS process has attracted considerable interest
in microscale and nanoscale devices [12]. Brillouin laser
action has been demonstrated in several microcavity reso-
nator systems including silica [13–16], CaF2 [17], and
silicon [18], and Brillouin amplification has been demon-
strated in integrated chalcogenide waveguides [19]. In
silicon waveguides, the use of confinement to enhance
amplification has been studied [20]. SBS is also a powerful
tool for integrated photonics signal processing [21–23], and
it has been applied to realize a chip-based optical gyroscope
[24]. Moreover, at radio-frequency rates, the SBS damping
rate is low enough in certain systems to enable cavity
optomechanical effects [25] including optomechanical cool-
ing [26] and optomechanical-induced transparency [27].
This work studies a recent prediction concerning the

fundamental linewidth (i.e., nontechnical noise contribu-
tion to linewidth) of the stimulated Brillouin laser (SBL).
The analysis of fundamental fluctuations in Brillouin
devices falls into a more general category of optomechan-
ical oscillators in which phonons participate in the oscil-
lation process [28,29]. This participation creates a channel
for fundamental sources of mechanical noise to couple into

the ocillator. For comparison, the SBL fundamental line-
width [15] and the conventional laser Schawlow-Townes
(ST) linewidth [30] in Hertz are given below,

ΔνSBS ¼
ℏω3

4πPQTQE
ðnT þ NT þ 1Þ; ð1Þ

ΔνST ¼ ℏω3

4πPQTQE

�
NT þ 1

2

�
ð2Þ

where nT is the number of thermal quanta in the mechanical
field at the Brillouin shift frequency, NT is the number of
thermal quanta in the laser mode (negligible at optical
frequencies and henceforth ignored), P is the laser output
power,QT (QE) is the total (external)Q factor (note:Q−1

T ¼
Q−1

0 þQ−1
E with Q0 the instrinsic Q), and ω is the laser

frequency. At very low temperatures where nT is negligible,
the quantum-limited SBL linewidth is twice as large as the
Schawlow-Townes linewidth on account of phonon par-
ticipation in the laser process. At finite temperatures nT is
predicted to provide the dominant contribution to the
fundamental SBL linewidth. SBL fundamental linewidth
measurements at room temperature are consistent with this
prediction [15]. In this study, the phonon contribution to
Eq. (1) is verified by determination of nT over a wide range
of temperatures followed by comparison to the Bose-
Einstein phonon occupancy.
It is important to note that in addition to the fundamental

phase noise [Eq. (1)] there is also an important technical
noise contribution to the Brillouin linewidth. Specifically,
because the Brillouin process is fundamentally a parametric
process, pump-phase-noise leaks into the phase of the
Stokes wave [11,15,29,31]. This pump noise is theoretically
predicted and experimentally observed to be strongly
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suppressed by the stronger damping of phonons relative to
the optical Stokes wave [11,31], but can nonetheless
dominate the Brillouin linewidth if the pump linewidth is
large enough. In prior work, low noise optical pumping has
been shown to enable observation of the fundamental
Brillouin noise in resonators like those studied here
[15,22]. These pumping conditions are used here to observe
the fundamental noise.
Figure 1(a) shows the measurement setup. Pump and

signal light are conveyed using fiber optic cables. After
passing through an optical circulator, the pump laser passes
into the cryostat using a fiber vacuum feedthrough. Inside
the cryostat the pump laser power is evanescently coupled
to a silica disk microresonator using a fiber taper that is
positioned piezoelectrically [Fig. 1(b)]. Pumping power to
the resonator as high as 20 mW was possible. The silica
microresonator, shown in Fig. 1(c), is a wedge design [14].

The cryostat is an open-loop continuous-flow unit and
was cooled to 77 K using liquid nitrogen and to 8 K using
liquid helium.
Brillouin laser action proceeds as diagrammed in

Fig. 1(d) where cascaded lasing is illustrated. Pump light
coupled to a resonator mode induces Brillouin gain over a
narrow band of frequencies that are downshifted by the
Brillouin shift frequency Ω=2π ¼ 2nVs=λP where Vs is
the sound velocity, n is the refractive index, and λP is the
pumping wavelength [15]. At room temperature in the
silica devices tested here, the Brillouin-shift frequency is
10.8 GHz for optical pumping near 1.55 μm. When the
cavity free-spectral range approximately equals Ω, stimu-
lated Brillouin lasing is possible creating a first-Stokes
wave (FSR-Ωmatching occurs for resonator diameters near
6 mm in the silica devices tested here). This Stokes wave
propagates backward relative to the pump wave on account

(a)

(b)

(d)

(e)

ECDL

EDFA

PDH Feedback

Cryostat

µ - resonator

PD

PD

Electrical signal

Optical signal

(c)

Oscilloscope

L(f) Analyzer 
/ ESA 

OSA

6 mm

PC

Fast
PD

Frequency

Pump 1

1st Stokes

ForwardFSR

Backward

2nd Stokes

3rd Stokes

cavity mode

SBS gain

Stokes wave Pump Laser

1566.0 1566.5 1567.0 1567.5 1568.0 1568.5
-100

-80

-60

-40

-20

0

O
pt

ic
al

 P
ow

er
 (

dB
m

)

Wavelength (nm)

1st Stokes

3rd Stokes

5th Stokes

-250 0 250
-100

-50

0

R
F

 P
ow

er
 (d

B
m

)

Frequency (kHz + 21.53 GHz)

RBW = 1 kHz

FIG. 1. Experimental setup and Brillouin laser action. (a) Experimental setup showing external cavity diode laser (ECDL) pump,
erbium-doped fiber amplifier (EDFA), polarization control (PC), and circulator coupling to the cryostat. Green lines indicate optical
fiber. A fiber taper is used to couple to the microresonator. Pump and even-ordered stimulated Brillouin laser (SBL) waves propagate in
the forward direction while odd-ordered SBL waves propagate in the backward direction and are coupled using the circulator.
Photodetectors (PD) and an oscilloscope monitor the waves propagating in both directions. A fast photodetector measures the first and
third beatnote which is measured using an electrical spectrum analyzer (ESA) and phase noise [L(f)] analyzer. An optical spectrum
analyzer (OSA) also measures the backward propagating waves. The pump laser is locked to the microresonator optical resonance using
a Pound-Drever-Hall (PDH) feedback loop. (b) Schematic of the optical fiber taper coupling setup inside the cryostat. Optical fiber (red)
is glued to an aluminum holder which is fixed on a 3-axis piezoelectric stage. The microresonator is mounted on a copper plate. (c) Top
view of the 6 mm wedge disk resonator. (d) Illustration of cascaded Brillouin laser action. Pump and even Stokes orders propagate in the
forward direction while odd orders propagate in the backward direction. Green curves represent the Brillouin gain spectra. Brillouin shift
frequency (Ω) and free-spectral range (FSR) are indicated. (e) Optical spectrum measured using the OSA and showing cascaded
Brillouin laser action to fifth order. Inset: typical electrical beatnote spectrum produced by the first- and third-order SBL signals.
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of the Brillouin phase matching condition, and emerges
from the cryostat at the fiber input [Fig. 1(a)]. With
increasing pump power, the first-Stokes wave will grow
in power and ultimately induce laser action on a second-
Stokes wave, which, by phase matching, propagates in the
forward direction. Phase matching ensures that odd (even)
orders propagate backward (forward), and follow fiber-optic
paths in Fig. 1(a) to measurement instruments. Figure 1(e) is
a spectrum of cascaded laser action to fifth order measured
using the OSA. Odd orders appear stronger than the even
orders (and the pump signal) because the OSA is arranged to
detect odd orders. Even-order detection occurs because of
weak backscattering in the optical system.
The SBL cascade obeys a system of rate equations

relating the circulating photon number, pn, of the nth-
Stokes wave to the circulating photon number, pn−1, of its
preceding ðn − 1Þst-pump wave [15].

_pn ¼ gnpn−1pn −
ωn

QT
pn; ð3Þ

where

gn ¼ ℏωnv2gΓ
gB
Veff

≈ ℏωnvgΓ
Ω
2π

�
gB
Aeff

�
ð4Þ

is the Brillouin gain coefficient for the nth-Stokes wave in
Hertz units. Here, ωn is the optical frequency of the nth
Stokes wave, vg is the group velocity, Γ is the phonon-
photon mode overlap factor (defined as the optical mode
area, Aeff , divided by the acousto-optic effective mode area
[32]), gB is the bulk Brillouin gain coefficient of silica, Veff
is the effective optical mode volume of the nth-Stokes
wave, and Ω ¼ FSR is assumed. gB=Aeff is the normalized
Brillouin gain coefficient in W−1m−1 units.
As pumping to the resonator is increased, a Stokes wave

will begin to lase and increase in power until it clamps
when the threshold condition for the next Stokes wave in
the cascade is reached. This clamped power, Pclamp, follows
directly from the steady-state form of Eq. (3),

Pclamp ¼
ωn−1

QE
ℏωn−1pn−1 ≈

1

g
ℏω3

QTQE
ð5Þ

where the approximation results from letting ωn−1 ≈ ωn
and in the final result the Stokes order, n, is suppressed. At
this clamped power, the fundamental SBL linewidth
follows by substitution of Eq. (5) into Eq. (1),

Δνclamp ¼
g
4π

ðnT þ 1Þ: ð6Þ

It is useful to note that the SBL linewidth in the clamped
condition is independent of QT and QE. From Eq. (5),
measurement of Pclamp, QT , and QE are sufficient to
determine g. If combined with Eq. (6) and measurement
of Δνclamp then nT can be determined at each operating
temperature; see the Supplemental Material [33].
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FIG. 2. Aligning the third-Stokes wave to the Brillouin gain
spectrum maximum. (a) Illustration showing spectral place-
ment of Stokes wave with respect to Brillouin gain spectrum
maximum. Variation of the pumping wavelength causes the
Brillouin shift frequency (Ω) to vary and thereby scans the
Stokes wave across the Brillouin gain peak. (b) Measured
spectra of Pclamp, the clamped third-order Stokes wave power
(black circle). The three panels show measurements per-
formed at T ¼ 300, 77, and 8 K. Each color corresponds
to a distinct pumping wavelength. The first-order Stokes wave
also appears in the spectral map as the stronger peak near the
third-order Stokes wave. The pump wave is not observable in
the linear-scale spectrum as it propagates in the direction
opposite to the first-order and third-order Stokes waves.
Pmin
clamp is determined from the fitted red curve as the minimum

power point.
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The coefficient g depends on the placement of the Stokes
wave within the Brillouin gain spectrum, and the value of g
at the spectral maximum (defined as g0) was determined by
tuning the pump frequency while recording Pclamp. This
causes the Brillouin shift frequency Ω to also tune, and
therefore to vary the spectral location of the Stokes wave
within the Brillouin gain band [see Fig. 2(a)]. Pclamp will be
minimum (denoted as Pmin

clamp) when the Stokes wave is
spectrally aligned to the maximum value of g, thereby
allowing determination of the pumping wavelength corre-
sponding to maximum g. At this pumping wavelength, the
value Pmin

clamp can be used to determine g0 from Eq. (5) when
QT and QE are measured.
Spectra showing multiple measurements of clamped

power for the third-Stokes wave at different pumping
wavelengths are presented in Fig. 2(b). The three panels
show spectra at T ¼ 300, 77, and 8 K. The third-Stokes
wave spectral peak at each pumpingwavelength is identified

by a black circle. At each temperature, the minimum
clamped power and corresponding wavelength are deter-
mined from the quadratic fit [red curve in Fig. 2(b)]. The
power clamping condition for the third-Stokes wave was
determined by monitoring the onset of laser action in the
fourth-Stokes wave. Also, optical losses between the res-
onator and the OSA were calibrated to determine the
clamped power. Table I summarizes the measuredminimum
clamped powers, Pmin

clamp, and their corresponding pumping
wavelengths.QT andQE are also given andwere determined
by fitting both the linewidth and the transmission minimum
of the Stokes mode. Finally, g0, calculated using Eq. (5), is
compiled in Table I; see the Supplemental Material [34].
To measure the laser linewidth, the beat of the first- and

third-Stokes waves is detected using a fast photodetector.
An electrical spectrum analyzer trace of this beat is
provided as the inset in Fig. 1(e). As described elsewhere
[22] the phase noise of this beat signal provides spectral
components associated with the fundamental phase noise of
the Stokes waves and can be used to infer the linewidth.
Moreover, because the first-Stokes wave has more power
than the third-Stokes wave [see Fig. 2(b)], the fundamental
linewidth of the first-Stokes wave is narrower. Accordingly,
fundamental phase noise in the beat signal is dominated by
the third-Stokes wave. Also, microcavity technical fre-
quency noise, while present, is reduced in this measurement
because the two Stokes waves lase within a single cavity.

TABLE I. Experimental parameters for Brillouin gain (g0)
calculation.

T (K) λ QT (×106) QE (×106) Pmin
clamp (mW) g0 (Hz)

300 1567.0 40 50.5 0.4 0.2272
77 1531.1 82.5 91 0.2423 0.1082
8 1530.8 94 103 0.0935 0.2174
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FIG. 3. (a) Phase noise spectra of the first- and third-order SBL beatnotes at three temperatures (300, 77, and 8 K). The Eq. (7) fit
within the 30–50 kHz band at each temperature is the black dotted line. The blue bands give the 1.5 dB variation in this fit over multiple
traces. (b) Red points are minimum SBL linewidths (Δνmin) resulting from the fittings in (a). (c) Thermal phonon occupancies (nT)
calculated from the measured Δνmin and g0 (see Table I) are plotted (red points) versus temperature. nT from the Bose-Einstein
occupancy is given as the black line. Triangular point: nT-based temperature calibration to 22 K using Bose-Einstein result.
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The phase noise of the first- and third-order SBL
beatnote is measured at the Pmin

clamp wavelength determined
in Fig. 2(b). The measured phase noise spectra at 300, 77,
and 8 K are shown in Fig. 3(a) over offset frequencies from
10 kHz to 10 MHz. The carrier frequencies are ∼21.5 GHz
and an instrument smoothing is applied to show the noise
trend. The theoretical phase noise spectrum for an SBL is
given by the expression

LðνÞ ¼ Δνmin

2ν2
¼ g0

8πν2
ðnT þ 1Þ ð7Þ

where Δνmin is the fundamental linewidth given by Eq. (6)
with g ¼ g0. In the electrical spectrum a white noise floor is
also added to this phase noise. Evenwith the common-mode
noise suppression noted above, there is considerable tech-
nical noise coupling to the phase noise spectrum from the
cryogenic system. The black dashed lines in Fig. 3(a) give
fits to the measured phase noise spectra using Eq. (7) within
the band 30–50 kHz, which seemed to be most immune to
technical noise contributions. These spectra were reproduc-
ible with a 1.5 dB variation range over multiple scans. The
effect of this variation on the fit is given by the blue bands in
the figure. Also, at 8 K, the phase noise above 1 MHz is
limited by the electronic noise floor due to relatively lower
Stokes signal power compared to measured signal power
at 300 and 77 K. The corresponding Δνmin is plotted in
Fig. 3(b). By using g0 from Table I and the Δνmin data in
Fig. 3(b), Eq. (7) provides values for nT at the three
temperatures as plotted in Fig. 3(c). The Bose-Einstein
thermal occupancy is also provided for comparison. The
discrepancy between the lowest temperature nT value and
the Bose-Einstein value could result from parasitic optical
heating or temperature difference between the temperature
sensor and the resonator. A calibrated temperature of 22 K is
estimated using the Bose-Einstein curve.
In summary, stimulated Brillouin lasers are unusual

because their fundamental linewidth is predicted to be
limited by thermomechanical quanta of the Brillouin mode.
We have confirmed this prediction by determining the
thermal phonon occupancy versus temperature using the
SBL phase noise. Measurements at 300, 77, and 8 K are in
good agreement with the expected Bose-Einstein occu-
pancy. This work provides a possible way to reduce the
SBL linewidth for precision measurements. It also lends
support to the theoretical prediction that the quantum-
limited linewidth of an SBL is strongly influenced by the
phonon zero-point motion. It is also worth noting that the
Brillouin gain bandwidth of silica is reported to be rapidly
narrowing at lower temperatures and is expected to be
comparable to the optical cavity linewidth below 2K [35]. In
this regime, the systemwould enter a cavity optomechanical
regime [25,28,29] wherein optical damping can exceed
mechanical damping. This would require a modification
to the SBL linewidth formula [18].
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