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We show that the coupling of quantum emitters to a two-dimensional reservoir with a simple band
structure gives rise to exotic quantum dynamics with no analogue in other scenarios and which cannot be
captured by standard perturbative treatments. In particular, for a single quantum emitter with its transition
frequency in the middle of the band, we predict an exponential relaxation at a rate different from that
predicted by Fermi’s golden rule, followed by overdamped oscillations and slow relaxation decay
dynamics. This is accompanied by directional emission into the reservoir. This directionality leads to a
modification of the emission rate for few emitters and even perfect subradiance, i.e., suppression of
spontaneous emission, for four quantum emitters.
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The interaction of quantum emitters (QEs) with propa-
gating bosonic particles, e.g., photons, lies at the core of
quantum optics [1]. This interaction leads, for example, to
collective interactions between QEs [2,3] which can be
harnessed for both quantum information and simulation
applications. New avenues in the integration of QEs with
nanophotonic structures [4–14] provide us with systems in
which the QEs interact with low-dimensional bosonic
modes, with complicated energy dispersions in the case
of engineered dielectrics [6–12]. Though originally the
main motivation of such implementations was to exploit
the small sizes to enhance light-matter interactions, it was
soon realized that intriguing phenomena arise because of
the reduced dimensionality. One particular aspect is the
possibility of realizing chiral emission [15–17], which can
display very uncommon features [18,19]. Another is the
possibility of exploiting the phenomena of sub- and super-
radiance [11,12,20–22], e.g., to enhance the coupling to the
emitter [23], to generate QE entanglement [18,24], to
produce nonclassical light [25,26], or even to perform
quantum computation [27].
The dynamics of QEs in 1D reservoirs is relatively

simple, especially when their transition frequency, ωe, lies
within a band. Perturbative treatments predict that a single
QE initially excited decays at a rate, Γ, given by the Fermi’s
golden rule (FGR), i.e., proportional to the density of states
of the bath at ωe. The emission mostly occurs in the bath
modes that are resonant with that frequency. Typically,
there are two such modes of associated momentum �ke,
leading to a symmetric left and right emission. When two
(or more) QEs are present, the existence of only two such
modes leads to super- or subradiant states, where the
emission is enhanced or suppressed by interference. In
higher dimensions for structureless baths, a single QE will
also decay at a rate given by the FGR. However, the
emission takes place in different directions as there are

many resonant modes in the bath. For two QEs, the
interference in the emission cannot occur in all those
modes at the same time [28] and, thus, the phenomena
of sub- and superradiance are generically absent.
In this Letter we use nonperturbative methods to analyze

the dynamics of QEs interacting with a simple two-
dimensional (2D) structured reservoir. By structured we
mean with a periodic structure giving rise to a dispersion
relation containing frequency bands. In particular, we
contrast our results with the predictions of perturbative
treatments based on a Markovian master equation
approach. First, we show how a single excited QE with
its energy tuned in the middle of the band shows an
exponential decay at a rate different from that predicted by
FGR. Moreover, at longer times, this exponential relaxation
is followed by an oscillation and subexponential dynamics.
These QE dynamics are followed by a directional emission
into the bath in two orthogonal quasi-1D directions, as also
predicted for classical sources of light [30] and sound [31].
As a consequence, when several QEs are coupled to the
bath, this directional emission induces anisotropic collec-
tive dissipation. For two QEs, we observe a modification of
the spontaneous emission rate as a consequence of this
directional emission when the QEs lie on a line at
45 degrees. A related behavior has been predicted in
[32] using perturbative master equations. We find that a
total suppression of the emission is not possible for two
QEs, and explain this fact in terms of a partial interference
effect. In contrast, we show how to design a perfect
subradiant state with four QEs which survives even in
the nonperturbative regime, since in that case the interfer-
ence can be fully destructive.
We assume a 2D bath with a squarelike symmetry

described by N × N bosonic modes with energy ωa and
with nearest neighbour coupling J. The Hamiltonian is
given by (using ℏ ¼ 1) HB ¼ −J

P
hn;miða†man þ H:c:Þ,

PRL 119, 143602 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

0031-9007=17=119(14)=143602(6) 143602-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevLett.119.143602


where n ¼ ðnx; nyÞ is a vector indicating the bosonic mode
position within the lattice. We have used a rotating frame at
a frequencyωa, such that the zero energy corresponds to the
center of the band structure (see below). Despite the
simplicity of the model, we expect it to describe more
complex materials such as photonic crystals, in the same
way that the 1D tight-binding model does for structured
waveguide QED. The bath Hamiltonian can be diagonal-
ized in k space by introducing periodic boundary con-
ditions and the operators ak ¼ ð1=NÞPne

−iknan, where
k ¼ ðkx; kyÞ and kx, ky ¼ ð2π=NÞð−N=2;…; N=2 − 1Þ,
such that HB¼

P
kωðkÞa†kak with ωðkÞ ¼ −2J½cosðkxÞþ

cosðkyÞ�. In Fig. 1, we plot the energy dispersion of the
band ωðkÞ together with the associated density of states in
the limit N → ∞, DðEÞ ¼ ½1=ð2πÞ2�∬ dkδ½E − ωðkÞ�. The
band extends from ½−4J; 4J�. At the band edges, the DðEÞ
is nearly constant as predicted for isotropic dispersions
[33]. At the middle of the band it displays a divergence
associated to the saddle point appearing at the energy
dispersion ωðkÞ, as it also happens for real materials [30].
As we show below, this has important consequences in the
dynamics beyond purely enhancing the emission. We also
consider one (or several) QEs described as two-level
systems fjgij; jeijg, with transition frequency, ωe, whose
Hamiltonian reads HS ¼ Δ

P
jσ

j
ee. We use the notation

σjαβ ¼ jαijhβj for the spin operators and Δ ¼ ωe − ωa
represents the detuning with respect to the middle of the
band. Finally, we assume a local coupling of the QEs to
the bath modes, described by Hint ¼ g

P
jðanj

σjeg þ H:c:Þ.
We also assume a parameter regime where the QEs are
coupled to a single band of the bosonic reservoir.
Throughout this Letter we consider the QE(s) to be

initially excited in certain QE state jΦ0iS, whereas the bath
starts initially empty, i.e., jvaciB ¼ j0i⊗N2

. Then, we let
the system free to evolve under the total Hamiltonian
H ¼ HS þHB þHint, and study the QEs relaxation. The
situation when the QE energies lie outside the band,
jΔ� 4Jj ≫ g, where the dynamics are dominated by the
presence of a bound state, has been explored extensively in
other works (see, e.g., [34–36]). We focus here instead on
the situation when the QE energies lie within the band,

Δ ∈ ½−4J; 4J�, with emphasis on what happens in the
middle of the band. In our illustrations, we use relatively
large values of g in order to emphasize the features in the
figures; however, the conclusions can be extended to
smaller g s, which is the common situation in the optical
regime. Nevertheless, we make a complete discussion
about the whole range of parameters and give more details
about the calculation in an accompanying paper [37].
We first consider that a single QE is coupled to the bath,

such that we drop the index j in the QE operators and
assume jΦ0iS ¼ jei. As the initial state contains a single
excitation, the state at any time, t, can be written as follows:

jΨðtÞi ¼
�
CeðtÞσeg þ

X
n

CnðtÞa†n
�
jgi ⊗ jvaciB; ð1Þ

In Fig. 2 we show the results of the numerical integration
of the dynamics of the QEs for several detunings for
Δ=J ¼ −3;−2;−1, 0 and g ¼ 0.1J, which we complement
with the state of the bath excitations, i.e., jCnj, at tJ ¼ 100
for Δ ¼ −3J; 0. From Fig. 2(a), it seems that the decay of
the QE is basically exponential, with an enhanced decay
rate as its energy is tuned closer to the center of the band.
Naively, this is what one expects from perturbative
approaches, which predict jCeðtÞj2 ≈ e−ΓeðΔÞt, with a decay
rate given by FGR, ΓeðΔÞ ¼ 2πg2DðΔÞ, whereDðΔÞ is the
density of modes evaluated at the QE energy Δ. For Δ=J ¼
−3;−2;−1 such prediction works well; however, forΔ ¼ 0
a straightforward application of FGR predicts an infinite
decay rate that we do not observe in Fig. 2(a). Moreover,
when plotting the population dynamics in logarithmic scale

(a)
(b)

FIG. 1. (a) Energy dispersion ωðkÞ=J and (b) density of states
DðEÞ for the square lattice tight-binding model with a black line
highlighting the k points satisfying ωðkÞ ¼ 0.

FIG. 2. (a) Excited state population jCeðtÞj2 for a single QE for
g=J ¼ 0.1 and different QE energies as depicted in the legend.
Inset: Excited state population jCeðtÞj2 in logarithmic scale for
Δ ¼ 0 to visualize the nonperturbative dynamics. (b),(c) Prob-
ability amplitude of the bath modes, jCnj, for positions n ¼
ðnx; nyÞ at a time tJ ¼ 100 for Δ=J ¼ −3 and 0, respectively.
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(inset) we observe that the relaxation is actually non-
monotonic, showing both an oscillation and a subexpo-
nential decay for long times.
To gain analytical insight into this exotic relaxation,

we apply standard techniques [1] to rewrite the probability
amplitudes in terms of their Fourier transform Ce;kðtÞ ¼
ði=2πÞ R∞

−∞ dEGe;kðEþ i0þÞe−iEt, where

GeðzÞ ¼
1

z − Δ − ΣeðzÞ
; GkðzÞ ¼ g

GeðzÞ
z − ωðkÞ ; ð2Þ

and ΣeðzÞ ¼ ðg2=N2ÞPkð1=½z − ωðkÞ�Þ is the so-called
QE self-energy that captures the effect of the coupling to
the bath on the QE dynamics. From now on we focus on
what happens for energies, E, around the middle of the
band (jEj ≪ J), where the self-energy can be expanded as
[37–39]

ΣeðEþ i0þÞ ≈ g2

4J

�
sgnðEÞ − 2i

π
log

� jEj
16J

��
: ð3Þ

In this expression we observe that around E ¼ 0, the real
part, which we denote as δωeðEÞ, has a discontinuous jump,
whereas the imaginary one, denoted as ΓeðEÞ, has a
logarithmic divergence. For the latter, we use the same
notation as the FGR decay rate because they are connected.
More concretely, the standard perturbative approaches, such
as the Markov approximation [40], assume the self-energy
to smoothly vary around Δ and replace ΣeðEþ i0þÞ≈
ΣeðΔþ i0þÞ, recovering the exponential relaxation of
jCeðtÞj2 with decay rate, ΓeðΔÞ, as given by the FGR.
The divergence appearing in the middle of the band,

however, forces us to go beyond the perturbative treatment to
unravel the results. In the standard quantum optical scenario
[1] one calculates the exact Fourier transform of CαðtÞ by
closing the contour in the lower half complex plane
ImðEÞ < 0, taking detours at the band edges of ωðkÞ
because of the presence of branch cuts in the self-energy.
The poles in the real axis describe bound states, and give rise
to fractional decay [41]. The complex ones lead to an
exponential decay. Finally, branch cuts associated to the
band edges give rise to power-law decays, which are,
however, typically hidden by the fractional decay induced
by bound states [41]. In the case studied here, an additional
branch cut appears in the (negative) imaginary axis, asso-
ciated to the divergence of the DðEÞ in the middle of the
band. This forces us to take an extra detour in the integration
contour which has two visible consequences in the inset of
Fig. 2(a): (i) the slow relaxation dynamics at long times
scaling as Oð½t logð16JtÞ2�−2Þ and (ii) there exists a regime
of Δ ∈ ½−g2=ð2JÞ; g2=ð2JÞ�, in which two unstable poles
appear in the analytical continuation of GαðzÞ. For Δ ¼ 0,
their imaginary part coincides and is given by [37]

Γ̄e ≈
g2

πJ
log

�
32πJ2

g2

�
ð4Þ

obtained in the limit 32πJ2=g2 ≫ 1. Their real part is given
by ≈ �g2=ð2JÞ. This explains both the finite time scale
observed in Fig. 2(a) and the oscillation observed in the
inset, which has a frequency proportional to the difference of
the real part of the unstable poles (∼g2=J). Both behaviors
emerge from the failure of perturbative treatments due to the
divergent density of states. The oscillations can also be
intuitively understood because some of the k modes
propagate very slowly, allowing them to be reabsorbed by
the QE. Remarkably, for short times one observes an
exponential relaxation with a time scale given by Eq. (4)
rather than the one expected from perturbative arguments,
which would be Oðg2=JÞ.
We also plot the emission into the bath in Figs. 2(b)–2(c).

The bath population can also be obtained exactly in the
long-time limit, as the probability amplitude CkðtÞ is still
dominated by the pole contribution of GkðEþ i0þÞ of
Eq. (2) at E ¼ ωðkÞ, which yields

lim
t→∞

CkðtÞ ¼
ge−iωðkÞt

ωðkÞ − Δ − Σe½ωðkÞ�
: ð5Þ

This expression tells us that the k modes around ωðkÞ ≈
Δ for g ≪ J are the ones dominating the emission. This
explains why the k modes are isotropically populated,
when Δ is away from zero, as ωðkÞ ≈ fðjkj2Þ. For Δ ≈ 0,
we have that the modes that dominate fulfill kx � ky ¼ π,
as sketched in Fig. 1(a). This explains why the emission is
anisotropic in this case: the only resonant modes fulfill
kx � ky ≈�π, and thus propagate along the diagonals.
Now, we include several QEs in the discussion and take

Δ ¼ 0. We explore the interplay between the anisotropic
emission and the relative position, n12, of the QEs, to check
up to which point super- or subradiance phenomena survive
within a nonperturbative picture. We first study the scenario
with two QEs prepared in a (anti)symmetric superposition
jΦ0iS ¼ jΦ2;�i ¼ ð1= ffiffiffi

2
p Þðσ1eg � σ2egÞjgi⊗2. Interestingly,

when ωðkÞ ¼ ωð−kÞ the dynamics of the symmetric or
antisymmetric state separate because they couple to
orthogonal bath modes. Consequently, their relaxation
dynamics is calculated analogously to the one of a single
QE, but replacing: Σe → Σ� ¼ Σe � Σ12, where Σ12 ¼
ðg2=N2ÞPkðeik·n12=½z − ωðkÞ�Þ is the collective QE inter-
action induced by the environment, which can be obtained
recursively [37–39]. In this Letter, we focus on a situation
when the two QEs lie along a diagonal, n12 ¼ ðn; nÞ, as this
is where most of the emission occurs [see Fig. 2(c)], and
which may lead to modifications of collective decay [32].
We find that the perturbative Markov approaches, i.e.,
Σ12ði0þ;nÞ=Σeði0þÞ ¼ ð−1Þn, which point to the possibil-
ity of perfect super- or subradiance. However, from our
single QE study we know at Δ ¼ 0 perturbative approaches
may fail.
To go beyond perturbative treatments, we first numeri-

cally integrate the dynamics and show that if n is even
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(odd), the states jΦ�ð∓Þi have enhanced (suppressed) decay
rates, as expected from the propagation phases of the bath
modes satisfying kx � ky ¼ π, which are the ones domi-
nating the dynamics when Δ ¼ 0. We show an example of
such dynamics in Figs. 3(a)–3(b) for n12 ¼ ð6; 6Þ, where
we observe collective effects leading to enhancement or
suppression of spontaneous emission. Notice, however, that
neither the suppression nor the enhancement is perfect, as it
occurs in 1D systems. The reason behind that can be
intuitively understood from the bath population that we plot
in Figs. 3(b)–(c). For the superradiant state, i.e., jΦ2;þi, the
emission occurs in three quasi-1D modes, one collective
along the diagonal where the QEs are placed and two
independent ones along the orthogonal directions. In
contrast, the subradiant state jΦ2;−i suppresses the emission
in the diagonal where they are placed, while emitting into
(two) quasi-1D modes along the orthogonal diagonals.
These independent decay channels forbid finding a
perfectly subradiant state with only two QEs. This enhance-
ment (suppression) can also be explained in terms of
constructive (destructive) interference of the bath modes
emitted by the two QEs at ωðkÞ ¼ 0, which are mainly
given kx þ ky ¼ �π, such that their phases, eiðkxþkyÞn�
eiðkxþkyÞn ¼ e�iπn � e�iπn, add up constructively (destruc-
tively) depending on the relative phase between QEs. Apart
from that, we observe (i) retardation effects, as they also
occur in 1D systems and (ii) other non-Markovian effects
introduced by the divergence of the density of states, which

lead to a logarithmic correction of the super- or subradiant
decay with the distance [37].
The intuition obtained with two QEs allows us to build

perfect subradiant states with four QEs. Let us consider
four QEs at positions ð0; 2nÞ, ð2n; 0Þ, ð2n; 4nÞ, and
ð4n; 2nÞ and assume they are in a state jΦ4;�i ¼
1
2
ðσ1eg � σ2eg þ σ3eg � σ4egÞjgi⊗4. The decay of jΦ4;þi is

collectively enhanced with an emission in eight orthogonal
directions as shown in Fig. 3(d). Starting out in jΦ4;−i, the
emission is completely suppressed (up retardation effects)
because perfect destructive interference occurs in the eight
emission directions, trapping the light between the four
QEs [see Fig. 3(d)]. The analysis to show that the jΦ4;−i is
perfectly subradiant relies on the fact that in this position
configuration, the QE modes defined by ðσ1eg � σ2eg þ
σ3eg � σ4egÞ couple to orthogonal bath modes, which allows
us to consider their dynamics as those of a single QE, but
with a modified self-energy. In particular, for the subradiant
case the associated self-energy can be shown to be [37]

Σ4;−ðzÞ ¼
4g2

π2

ZZ
π

0

dq
sin2ð2qxnÞ sin2ð2qynÞ
zþ 4J cosðqxÞ cosðqyÞ

;

where we have used the rotated axis coordinates
kx;y ¼ qx � qy. If Σ4;−ðzÞ vanishes at z ¼ 0, this implies
that a real bound state emerges within the band. This can be
shown to be the case because the integrand at z ¼ 0 is
separable in qx;y; each integrand satisfies (i) Iðqx;yÞ ¼
−Iðπ=2 − qx;yÞ and (ii) its divergence appearing because
the zeros in the denominator for the q modes satisfying
qx;y ¼ π=2 are canceled by the one in the numerator. The
last thing to show is that, indeed, its associated residue,
connected to the steady-state population, is not zero. We
can explicitly calculate it obtaining

C4;−ð∞Þ ¼ 1

1 − ∂zΣ4;−ðzÞ
����
z¼0

¼ 1

1þ g2n2=J2
; ð6Þ

which is, therefore, very close to 1 as long as retardation
effects are small, g2n2=J2 ≪ 1. In any case, we obtain that,
independent of the distances, there always remains some
excitation within the QEs.
Finally, let us briefly comment on how the Hamiltonian

H can be obtained on a platform beyond engineered
dielectrics [6–12], namely, cold atoms in state-dependent
optical lattices [42,43]. The simplest scenario consists of a
bosonic atom with two metastable states, a or b, trapped in
a shallow or deep optical potential. In that situation, only
the a atoms tunnel to nearest neighbor at a rate, J, of the
order of 10 kHz in typical experiments [44]. Thus, the a or
b atoms play the role of the propagating bath modes or
QEs, respectively. Their coupling is obtained through either
two-photon Raman transition or, in the case of alkaline-
earth atoms, through direct optical coupling and can thus be
g ∼OðJÞ, which allows one to tune g and Δ from 0 to
several MHz, and thereby investigate all the parameter

(a)

(b) (c)

(d) (e)

FIG. 3. (a) Population of states jΦ2;�i [jΦ4;�i] for a coupling
g ¼ 0.05J for positions n12 ¼ ð6; 6Þ and (6,0),(0,6),(6,12),(12,6),
respectively. (b)–(e) Bath probability amplitude at time tJ ¼ 200
for the initial states of panel (a) as depicted in the legend.
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regimes. Atomic motion effects can be suppressed by
cooling the atom initially to the ground state and operating
in the Lamb-Dicke regime. The scattering losses induced
by the trapping potential, the finite lifetime of the optically
metastable state in alkaline-earth atoms, or other imper-
fections, lead to decoherence in both the QE and bath
modes which can be as small as Γloss ∼ Hz [45,46], such
that g=Γloss ∼ 104. The impact of losses on the observation
of the phenomenology has been considered in Ref. [37].
The possibility of addressing single sites [47,48] and
distinguishing the internal states makes this setup ideal
to observe our predictions.
To sum up, we have explored the nonperturbative

QEs dynamics emerging from their coupling to a two-
dimensional bosonic bath with a squarelike geometry when
their energies lie in the middle of the band. For a single QE,
we predict an exponential relaxation at short times but with
a time scale that escapes Fermi’s golden rule description,
which is followed by reversible and slow relaxation
dynamics at longer times. Moreover, such phenomena
are accompanied by strongly directional emission into
the bath along two quasi-1D orthogonal directions, which
lead to super- or subradiant states when many QEs are
coupled to the bath. For two QEs, the perturbative
predictions are corrected due to the divergent density of
states in the middle of the band, which forbids perfect
super- or subradiance. We characterize the phenomena
mathematically and give an intuitive explanation in terms
of interference. This understanding allows us to build
perfect subradiant states with four QEs, where the emission
is trapped within them despite the 2D character of the bath.
Both the directionality and the divergent density of states

responsible for the phenomena we describe are associated
to the saddle points in ωðkÞ, and not its interplay with
polarization as in 1D chiral systems [17]. Since those points
are ubiquitous in 2D reservoirs, we conjecture that our
findings will be relevant in more general situations beyond
the simple model employed here [30]. Apart from the
platforms mentioned, the predictions can also be tested in
circuit QED [49–52].
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