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We convert a strongly interacting ultracold Bose gas into a mixture of atoms and molecules by sweeping
the interactions from resonant to weak. By analyzing the decay dynamics of the molecular gas, we show
that in addition to Feshbach dimers it contains Efimov trimers. Typically around 8% of the total atomic
population is bound into trimers, identified by their density-independent lifetime of about 100 μs. The
lifetime of the Feshbach dimers shows a density dependence due to inelastic atom-dimer collisions, in
agreement with theoretical calculations. We also vary the density of the gas across a factor of 250 and
investigate the corresponding atom loss rate at the interaction resonance.

DOI: 10.1103/PhysRevLett.119.143401

Experiments with ultracold atomic gases provide access
to a vast array of intriguing phenomena, in part because of
magnetically tunable Feshbach resonances. In particular,
recent experimental [1–5] and theoretical [6–16] advances
have made resonantly interacting Bose gases an exciting
new research topic [17]. Unlike their fermionic counter-
parts, strongly interacting Bose systems are profoundly
influenced by three-body phenomena, and help us under-
stand the progression from two- through few- to many-
body physics.
At the Feshbach resonance the s-wave scattering length

a diverges, and in the case of zero density the Feshbach
molecule state, also of size a, merges with the free-atom
state. This diatomic resonant scenario is the prelude for a
set of exotic few-body phenomena, namely, the Efimov
effect. Although the Feshbach molecular state is unbound
at the resonance, there exists an infinite log-periodic series
of Efimov three-body bound states [18,19]. At 1=a → 0 the
size of the pth Efimov state (p ¼ 0; 1; 2;…) is larger than

the previous by a factor by 22.7, and its binding energy EðpÞ
T

smaller by a factor of 22.72 [20,21].
At finite density n many-body effects complicate the

physics. The system has an additional length scale, the
interparticle spacing n−1=3, that may determine how few-
and many-body interactions scale. Many questions arise,
such as what are the structure, strength, length scale, and
dynamics of the two-, few-, and many-body correlations?
What does it mean to have a two- or three-atom molecule
when it is embedded in a gas with interparticle spacing
comparable to the molecular size?
Both the ambiguous constitution of two- and three-body

states in a many-body environment and the short-lived
quasiequilibrium of a resonantly interacting Bose gas [3]
complicate experiments. For these reasons, many experi-
ments simplify matters by reducing interactions to a

well-understood regime before imaging [1–4]. This inter-
action sweep can preserve resonance fossils in the form of
perceived loss [1,2,4], momentum generation [3], and
molecule formation.
In this Letter, we create a mixture of 85Rb (free atoms),

85Rb�2 (Feshbach dimers), and 85Rb�3 (Efimov trimers) by
sweeping a resonantly interacting degenerate Bose gas onto
the molecular states in the weakly interacting regime
(na3 ≪ 1). We calculate that the relevant Efimov trimer
has a binding energy spectroscopically indistinguishable
(within our technical limitations) from the Feshbach dimer
binding energy, Eb. However, we estimate that the Efimov
molecule lifetime is an order of magnitude shorter than
the Feshbach dimer’s, making loss rates an invaluable tool
for distinguishing the population of each component. In
addition to detecting a population of Efimov trimers, we
measure the density-dependent atom-dimer collision rates
at finite interactions. We also present measurements of the
apparent atom loss over 2 orders of magnitude in density,
covering a significant fraction of a full Efimov period, and
discuss the potential of these measurements for probing the
few- and many-body effects in the resonantly interacting
Bose gas.
Our experiment begins with a 85Rb Bose-Einstein con-

densate (BEC) of ð6–8Þ × 104 atoms confined in a 10 Hz
spherical magnetic trap in the jF;mFi ¼ j2;−2i state
[22]. We use the Feshbach resonance centered at
B0 ¼ 155.041ð18Þ G, with a width of Δ ¼ 10.71ð2Þ G,
to control the interactions [23]. We prepare our sample at
B ≈ B0 þ 8 G, at which a ≈ 150a0, well within the
extremely dilute limit with hnia3 < 10−5.
At this point our condensate has a Thomas-Fermi density

distribution with an average density of hni ¼ 5.8ð6Þ×
1012 cm−3. We take advantage of tunable interaction
strengths and our spherical trap to change to a mean
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density, n0, before the main experimental sequence [24];
see the Supplemental Material [25] for more information.
n0 defines our density-dependent scales for energy and
time: En ≡ ℏ2ð6π2n0Þ2=3=2m and tn ≡ ℏ=En.
We rapidly lower the magnetic field from B to B0 in 5 μs

following the procedure outlined in the methods section of
Ref. [3]. We estimate that by the end of our ramp, the field
is within 10 mG of the Feshbach resonance, which
corresponds to n0jaj3 > 104, even for our lowest density.
After allowing the gas to evolve on resonance for τevolve ¼
1.5tn we sweep to weak interactions (n0a3 < 0.001) at a
typical rate of 12.5 μs=G. This sweeps the many-body
resonant wave function onto the weakly interacting free
atomic state and the shallow molecular states, both
diatomic and triatomic. We measure the number of atoms
swept into the molecular states by flipping one atom from
each molecule from j2;−2i to the j3;−3i imaging state,
using microwave dissociation (see Fig. 1) [26]. The 50 μs
microwave pulse is detuned > 1.5 × Eb from the atomic
resonance, and is long enough that all molecules are
dissociated.

To investigate the composition of the molecular gas at
weak interactions, we study its decay dynamics. A typical
measurement is shown in Fig. 2. We find the data
are described well by a sum of two exponentials,
A1e−t=t1 þ A2e−t=t2 , an indication of a two component
mixture with distinct decay rates and populations of A1

and A2.
Figure 3(a) shows the fitted values of the longer lifetime,

t2, for various densities, and as a function of magnetic field.
For the lowest density (n0 ¼ 0.21 × 1012 cm−3) our mea-
surements are in qualitative agreement with theoretical
predictions for inelastic spin relaxation in Feshbach dimers,

τD ¼ τres
ma2bgμresΔ

2ℏ2

�
B − B0

Δ

�
2
�

Δ
B − B0

− 1

�
3

; ð1Þ

where abg ¼ −443ð3Þa0 [23], μres=h ¼ 34.66 MHz=mT
and τres ¼ 32 μs [28,29].
Similar measurements at ∼6 and ∼28 times larger den-

sities yield shorter dimer lifetimes [Fig. 3(a)]. The density
dependent loss rates are indicative of inelastic atom-dimer
scattering: the collision of an atom with a shallow dimer

FIG. 1. (a) The solid green line shows the two-body scattering
length near the Feshbach resonance centered at 155.04 G. The
solid red line is the calculated energy of the ground state Efimov

trimer, Eð0Þ
T [27]. The solid blue and dashed red lines show the

calculated molecular energies of the Feshbach dimer, Eb, and first

excited Efimov trimer, Eð1Þ
T , respectively. We populate molecular

states by sweeping our gas from 155.04 G to B > 158.6 G. With
a microwave pulse, we then transfer either atomic or molecular
population to the j3;−3i state for absorption imaging; the
experimental points in (b) are population transfer. The green
line is a delta function free-atom transition broadened by
experimental resolution. The blue line is a calculated Frank-
Condon factor for dimer dissociation [26]. The red line shows the
expected shape of the trimer dissociation yield, but the difference

between Eð1Þ
T and Eb is exaggerated for clarity.

FIG. 2. The number of molecules, normalized by the initial
atom number, as a function of hold time at a ¼ 700ð7Þa0 for
initial BEC densities n0 ¼ 1.3ð1Þ × 1012 cm−3 (dark triangles)
and n0 ¼ 0.20ð1Þ × 1012 cm−3 (light circles). The solid lines
show a two component exponential decay. At high and low
densities the time for the initial fast loss (t1) does not significantly
change, being 97(23) and 125ð36Þ μs, respectively; we identify
this loss as decay of the trimers. The time scales for the slower
loss (t2) are 1240(80) and 2200ð100Þ μs; as discussed in the text,
this is consistent with a combination of dipole relaxation and
collisional loss in the population of dimers [see Eq. (3)]. For
higher density data, the number of trimers is A1 ¼ 2000ð200Þ and
dimers A2 ¼ 4500ð200Þ. This corresponds to 6000 atoms that
were swept into the trimer state, roughly 8% of the initial sample.
The inset shows the normalized number of molecules as a
function of inverse ramp rate for n0 ¼ 5.5ð2Þ × 1012 cm−3 (dark
squares) and n0 ¼ 0.18 × 1012 cm−3 (light circles); the solid lines
are guides for the eye.
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produces a deeply bound molecule and a recoiling atom
[27,31]. The dimer number is expected to decay roughly
exponentially as this decay does not significantly deplete the
much larger population of atoms. The atom-dimer collisional
rate coefficient β, defined by dnD=dt ¼ dnA=dt ¼ −βnAnD,
is calculated in Ref. [31] to be

β ¼ 20.3 sinhð2η�Þ
sin2½s0 lnða=a�Þ� þ sinh2ðη�Þ

ℏa
m

; ð2Þ

whereη� is the inelasticity parameter characterizing thewidth
of the Efimov resonance at a ¼ a�, where the Efimov state
intersects the atom-dimer threshold [32].
The solid lines in Fig. 3(a) are theoretical predictions for

the dimer lifetime due to inelastic spin relaxation and atom-
dimer collisions:

1

τTotðB; n0Þ
¼ 1

τDðBÞ
þ 1

τADðB; n0Þ
; ð3Þ

where τAD ¼ 1=n0β. Based on density profile measure-
ments, we account for overall loss and modest expansion
during τevolve by setting n0 ¼ 0.7n0. We use η� ¼ 0.057
[33] and a� ¼ 275a0 [27], and see qualitative agreement
between our data and this model. We therefore conclude the
slower loss follows expected dimer loss rate patterns.
Returning now to explain the shorter lifetimes (t1) seen

in Fig. 2, we discuss the other molecular states in this
system: the infinite series of Efimov trimers that exist at
1=a → 0. The Efimov ground state has an energy on the
order of hundreds of kHz, [see Fig. 1(a)]. Of interest to our
experiment is the first-excited Efimov state, whose energy

Eð1Þ
T is on the order of hundreds of Hz [8,34], thus

comparable to En in our experimental range of densities.
It is reasonable to expect that the mechanism that sweeps
atoms into Feshbach dimers would also create Efimov
trimers. Although universal four-body states also exist
[35,36], for our experiment the first excited Efimov state
is the only relevant weakly bound molecular state besides
the Feshbach molecule [37].
We calculate ET

ð1Þ by solving the three-body problem in
the adiabatic hyperspherical representation [see Fig. 1(a)]
[8,34]. Our model, which includes a loss term tuned to
match the Efimov decay seen in Ref. [33], shows that ET

ð1Þ
is at most 7 kHz deeper than the Feshbach state and this
difference varies only by 2 kHz between 500a0 and 1000a0.
As we discuss in the Supplemental Material [25], finite-
range corrections to universal calculations [20] affect both
binding energy and lifetime predictions. Our simplified
finite-range predictions for the lifetime of the Efimov
molecule’s one-body decay to a deeply bound dimer state
are somewhat model dependent, and thus provide a range
rather than a unique value. The range includes our
measured values at 700a0, and is consistently an order
magnitude shorter than the dimer lifetimes at that value of
a, making the trimers distinguishable through lifetime
alone.
Figure 3(b) shows the fitted values of t1 at a ¼ 700ð7Þa0

for various initial densities. The time scale of the fast decay
does not appreciably vary over a range of 30 in density,
which rules out the possibility that it is due to dimer-dimer
or other inelastic collisional processes. Our measurements
average to a value of 114ð16Þ μs, in agreement with our
range of estimates for the trimer lifetime [38]. We therefore
take this fast decay as evidence that the excited Efimov
state has been populated.
Many experiments are sensitive to the existence of

Efimov states, through both observation of inelastic colli-
sion rates in atomic samples [33,39–44] and atom-dimer
resonances [45–49], and observation of atomic loss after rf
association into Efimov states [50–52], and other means
[5]. This work, along with that in Ref. [53], differs in that it
is an observation of a populated Efimov state.
We find that the population of Efimov and Feshbach

states depends on both the sweep rate (see inset of Fig. 2)

FIG. 3. (a) The lifetime of the Feshbach dimers for various
densities as a function of the scattering length, a. The solid lines
represent the predicted dimer lifetime for the respective densities.
The dashed line represents the predicted dimer lifetime consid-
ering only spin relaxation. While our lowest density molecules
live somewhat longer than the inelastic spin relaxation model
predicts, we see good agreement with previous measurements of
dimer lifetimes from Ref. [30] for n0 ¼ 0.26 × 1012 cm−3 (open
circle). (b) Over a factor of 30 range in density, the lifetime of the
Efimov trimers at a ¼ 700ð7Þa0 averages to 114ð16Þ μs (dashed
line), and shows no significant variation.
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and the evolution time on resonance, τevolve; for a fast
sweep and τevolve ≪ tn we see almost the entire population
return as free atoms. Whether the atoms collisionally decay
into deeply bound molecules, or are swept into weakly
bound ones, their disappearance is a signature of the
correlations that develop as the sample evolves at
resonance.
What is the relevant physics that sets the rate at which

these correlations appear? The physical range of the two-
atom interaction potential, rvdw, is likely too small to be
relevant, whereas the scattering length a and the initial
thermal wavelength are likely too large. What is left is only
the mean interparticle spacing n−1=3 and the sizes of the

Efimov molecule, RðpÞ
T . On resonance, RðpÞ

T is not exper-
imentally adjustable, but by studying the rate of atom loss
over a range in densities covering a factor of 250, we can

change the ratio RðpÞ
T =n−1=3 by a factor of 6.5, which is

more than half of a complete log-periodic Efimov cycle. To
cover such a wide range of density, we perform a simplified
protocol, in which we fix τevolve ≈ tn, sweep to weak
interactions in 5 μs, and simply look at the total loss of
the atomic population. In this protocol, both recombination
to deep states and conversion to shallow dimers and trimers
look like atom loss. In Fig. 4 we plot the atom-loss rate as a
function of the initial density, and find that it agrees quite
well with an n2=3 power law.
To the extent that the atom loss is due to three-body

recombination, the n2=3 scaling makes sense: in the mean-
field zero-temperature limit, the per atom three-body
recombination rate goes as n2a4 [54–57]; as a formally
diverges, a plausible physical limit is a ∼ n−1=3, yielding a
loss rate scaling as n2=3 [17,58]. While it is known that at
finite a the presence of Efimov states modulates the three-
body inelastic collision rates by a dimensionless log-
periodic function of a [20,39,40,55–57,59–62], it is not

known how this Efimovian physics modulates density
dependence when both T and 1=a → 0.
As for the other contributing component of the measured

atom loss (the conversion into shallow dimers and trimers)
we have no similar model. We do note that the total loss rate
scaling as n2=3 suggests that the Efimov length scale is, at
least for this particular combination of observables, much
less relevant than the interparticle spacing. However, the
propensity of the system to sweep into shallow molecules
appears to depend not only on the sweep rate but on density
in a way we do not fully understand yet (see inset of Fig. 2).
We believe the dependence of molecule formation on the
sweep rate offers information about the length scale of
correlations that form in the strongly interacting gas [63].
However, preliminary data exploring the multidimensional
parameter space of τevolve, sweep rates, and even the time at
weak interactions have displayed nonseparable dependen-
cies beyond a nontrivial n dependence.
In conclusion, we have created a 85Rb, 85Rb�2, and

85Rb�3
mixture by sweeping a resonantly interacting BEC onto
weak interactions. We believe a better theoretical under-
standing of how a many-body wave function evolves into
the molecular states as interaction strength is lowered may
suggest experiments to directly probe the few- and many-
body interactions in the resonantly interacting degenerate
Bose gas.
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