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We determine within lattice QCD the nucleon spin carried by valence and sea quarks and gluons.
The calculation is performed using an ensemble of gauge configurations with two degenerate light quarks
with mass fixed to approximately reproduce the physical pion mass. We find that the total angular momentum
carried by the quarks in the nucleon is Juþdþs ¼ 0.408ð61Þstatð48Þsyst and the gluon contribution is
Jg ¼ 0.133ð11Þstatð14Þsyst, giving a total of JN ¼ 0.54ð6Þstatð5Þsyst that is consistent with the spin sum. For

the quark intrinsic spin contribution,we obtain 1
2
ΔΣuþdþs ¼ 0.201ð17Þstatð5Þsyst. All quantities are given in the

modified minimal subtraction scheme at 2 GeV. The quark and gluon momentum fractions are also computed
and add up to hxiuþdþs þ hxig ¼ 0.804ð121Þstatð95Þsyst þ 0.267ð12Þstatð10Þsyst ¼ 1.07ð12Þstatð10Þsyst, thus
satisfying the momentum sum.
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Introduction.—The distribution of the proton spin among
its constituent quarks and gluons has been a long-standing
puzzle ever since the European Muon Collaboration
showed in 1987 that only a fraction of the proton spin is
carried by the quarks [1,2]. This was in sharp contrast to
what one expected based on the quark model. This so-
called proton spin crisis triggered rich experimental and
theoretical activity. Recent experiments show that only
30% of the proton spin is carried by the quarks [3], while
experiments at RHIC [4,5] on the determination of the
gluon polarization in the proton point to a nonzero
contribution [6]. A global fit to the most recent exper-
imental data that includes the combined set of inclusive
deep-inelastic scattering data from HERA and Drell-Yan
data from Tevatron and LHC led to an improved determi-
nation of the valence quark distributions and the flavor
separation of the up and down quarks [7]. The combined
HERA data also provide improved constraints on the gluon
distributions, but large uncertainties remain [7]. Obtaining
the quark and gluon contributions to the nucleon spin and
momentum fraction within lattice quantum chromodynam-
ics (QCD) provides an independent input that is extremely
crucial, but the computation is very challenging. This is
because a complete determination must include, besides the
valence, sea quark and gluon contributions that exhibit a
large noise-to-signal ratio and are computationally very
demanding. A first computation of the gluon spin was
performed recently via the evaluation of the gluon helicity
in a mixed action approach of overlap valence quarks on
Nf ¼ 2þ 1 domain wall fermions that included an ensem-
ble with pion mass 139 MeV [8]. In this Letter, we evaluate

all of the contributions to the spin of the proton as well as
the gluon and quark momentum fractions [9,10]. Such an
investigation has become feasible given the tremendous
progress in simulating QCD on a Euclidean four-dimen-
sional lattice with quark masses tuned to their physical
values (referred to as the physical point), in combination
with new approaches to evaluate sea quark and gluon
contributions that were not possible in the past [9,11–13].
This first study of valence and sea quark and gluon
contributions directly at the physical point allows us to
obtain complete information on the distribution of the
nucleon spin and momentum among its constituents.
Computational approach.—We use one gauge ensemble

employing two degenerate (Nf ¼ 2) twisted mass clover-
improved fermions [14,15] with masses that approximately
reproduce the physical pion mass [16] on a lattice of 483 ×
96 and lattice spacing a ¼ 0.0938ð3Þ fm, determined from
the nucleon mass [17]. The strange and charm valence
quarks are taken as Osterwalder-Seiler fermions [18,19].
The mass of the strange quark is tuned to reproduce the Ω−

mass and the mass of the charm quark is tuned independ-
ently to reproduce the mass of Λþ

c , as described in detail in
Ref. [17]. The strange and charm quark masses in lattice
units determined through this matching are aμs ¼
0.0259ð3Þ and aμc ¼ 0.3319ð15Þ, respectively, yielding
μc=μs ¼ 12.8ð2Þ. We note that if we instead tune to the
ratio of the kaon (D meson) to pion massmK=mπ (mD=mπ)
for the same ensemble, we find μc=μs¼12.3ð1Þ [16]. Given
that an extrapolation to the continuum, where the different
definitions are expected to be consistent, is not carried out
and the errors quoted are only statistical, this level of
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agreement is very satisfactory. For the renormalized
strange and charm quark masses, we find mR

s ¼
μs=ZP ¼ 108.6ð2.2Þð5.7Þð2.6Þ MeV and mR

c ¼ μc=ZP ¼
1.39ð2Þð7Þð3Þ GeV, where ZP is the pseudoscalar renor-
malization function determined nonperturbatively
in the modified minimal subtraction scheme (MS) at
2 GeV [17].
Matrix elements.—We use Ji’s sum rule [20], which

provides a gauge invariant decomposition of the nucleon
spin as

JN ¼
X

q¼u;d;s;c���

�
1

2
ΔΣq þ Lq

�
þ Jg;

where 1
2
ΔΣq is the contribution from the intrinsic quark spin,

Lq is the quark orbital angular momentum, and Jg is the
gluon total angular momentum. The quark intrinsic spin
1
2
ΔΣq is obtained from the first Mellin moment of the

polarized parton distribution function (PDF), which is the
nucleonmatrix element of the axial-vector operator. The total
quark angularmomentum,Jq, can be extracted by computing
the second Mellin moment of the unpolarized nucleon PDF,
which is the nucleon matrix element of the vector one-
derivative operator at zero momentum transfer. These matrix
elements in Euclidean space are given by

hNðp; s0ÞjOμ
AjNðp; sÞi ¼ ūNðp; s0Þ½gqAγμγ5�uNðp; sÞ;

hNðp0; s0ÞjOμν
V jNðp; sÞi ¼ ūNðp0; s0ÞΛq

μνðQ2ÞuNðp; sÞ;
Λμν
q ðQ2Þ ¼ Aq

20ðQ2ÞγfμPνg

þ Bq
20ðQ2Þ σ

fμαqαPνg

2m

þ Cq
20ðQ2Þ 1

m
QfμQνg; ð1Þ

with Q ¼ p0 − p being the momentum transfer and P ¼
ðp0 þ pÞ=2 the totalmomentum. The axial-vector operator is
Oμ

A ¼ q̄γμγ5q and the one-derivative vector operator

Oμν
V ¼ q̄γfμD

↔νgq, where the curly brackets in OV represent
a symmetrization over pairs of indices and a subtraction of
the trace. Λμν

q is decomposed in terms of three Lorentz
invariant generalized form factors Aq

20ðQ2Þ, Bq
20ðQ2Þ, and

Cq
20ðQ2Þ. A corresponding decomposition can also be made

for the nucleonmatrix element of the gluon operatorOμν
g . The

quark (gluon) total angular momentum can be written as

JqðgÞ ¼ 1
2
½AqðgÞ

20 ð0Þ þ BqðgÞ
20 ð0Þ�, while the average momen-

tum fraction is determined from AqðgÞ
20 ð0Þ ¼ hxiqðgÞ and

gqA ≡ ΔΣq, where gqA is the nucleon axial charge. While
Aq
20ð0Þ can be extracted directly at Q2 ¼ 0, Bq

20ð0Þ needs to
be extrapolated to Q2 ¼ 0 using the values obtained at a
finite Q2.

We compute the gluonmomentum fraction by considering
the Q2 ¼ 0 nucleon matrix element of the operator Oμν

g ¼
2Tr½GμσGνσ�, taking the combination Og ≡O44 − 1

3
Ojj,

hNðp; s0ÞjOgjNðp; sÞi ¼
�
−4E2

N −
2

3
p⃗2

�
hxig; ð2Þ

where we further take the nucleon momentum p⃗ ¼ 0.
In lattice QCD, the aforementioned nucleon matrix

elements are extracted from a ratio, RΓðts; tinsÞ, of a three-
point function G3-pt

Γ ðts; tinsÞ constructed with an operator Γ
coupled to a quark divided by the nucleon two-point
functionsG2-ptðtsÞ, where tins is the time slice of the operator
insertion relative to the time slice where a state with the
quantum numbers of the nucleon is created (the source). For
sufficiently large time separations ts − tins and tins, the ratio
RΓðts; tinsÞ yields the appropriate nucleonmatrix element. To
determine B20ðQ2Þ, we need the nucleon matrix element for
Q2 ≠ 0, which can be extracted by defining an equivalent
ratio as described in detail in Refs. [21–23]. An extrapolation
of B20ðQ2Þ is then carried out to obtain B20ð0Þ. We employ
three approaches in order to check that the time separations
ts − tins and tins are sufficiently large to suppress higher
energy states with the same quantum numbers with the
nucleon.These are the following. (i) Plateaumethod. Identify
the range of tins for which the ratio RΓðts; tinsÞ becomes time
independent and perform a constant fit. (ii) Summation
method. Sum RΓðts; tinsÞ over tins, to yield

P
tinsRΓðts;tinsÞ¼

Rsum
Γ ðtsÞ¼CþtsMþOðe−ðE1−E0ÞtsÞÞþ���, whereC is a con-

stant. The matrix elementM is then obtained from the slope
of a linear fit with respect to ts. (iii) Two-state fit method.We
perform a simultaneous fit to the three- and two-point
function, varying tins for several values of ts, including the
first excited state in the fit function. If excited states are
suppressed, the plateau method should yield consistent
values when increasing ts within a sufficiently large ts range.
We require that we observe convergence of the values
extracted from the plateau method and, additionally, that
these values are compatible with the results extracted from
the two-state fit and the summation method. We take the
difference between the plateau and two-state fit values as a
systematic error due to residual excited states.
The three-point functions for the axial-vector and vector

one-derivative operators entering the ratio RΓðts; tinsÞ
receive two contributions, one when the operator couples
to the valence up and down quarks (referred to as
connected) and when it couples to sea quarks and gluons
(disconnected). The connected contributions are computed
by employing sequential inversion through the sink [24].
Disconnected diagrams are computationally very demand-
ing due to the fact that they involve a closed quark loop and
thus a trace over the quark propagator. A feasible alter-
native is to employ stochastic techniques [25] to obtain
an estimate of the all-to-all propagator needed for an
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evaluation of the closed quark loop. For the up and down
quarks, we utilize exact deflation [26,27] by computing the
Nev lowest eigenmodes of the Dirac matrix to precondition
the conjugate gradient solver. Taking Nev ¼ 500 yields an
improvement of about 20 times compared to the standard
conjugate gradient method. We also exploit the properties
of the twisted mass action to improve our computation
using the so-called one-end trick [28,29], which yields an
increase in the signal-to-noise ratio [30,31]. This also
allows for an evaluation of the quark loops for all insertion
time slices, and, since the two-point function is computed
for all values of ts, the disconnected three-point function is
obtained for any combination of ts and tins, allowing a
thorough study of excited state effects. In addition, an
improved approach is employed for hxiq, exploiting the
spectral decomposition of the Dirac matrix. Within this
approach, we use the lowest eigenmodes to construct part
of the all-to-all propagator in an exact manner. This allows
us to invert less stochastic sources for constant variance;
hence, Nr is smaller for the hxiq in Table I. The remaining
part of the loop is calculated stochastically, with the use of
the one-end trick.
For the heavier strange and charm quarks, the truncated

solver method (TSM) [32] performs well [30,31]. In the
TSM, an appropriately tuned large number of low-precision
and a small number of high-precision stochastic inversions
are combined to obtain an estimate of Gsðx; xÞ. We give the
tuned parameters in Table I. These methods have recently
been employed to compute other nucleon observables using
this ensemble [33–35], as well as at higher than physical
pion masses [30,31].
The three-point function of the gluon operator is purely

disconnected. To overcome the low signal-to-noise ratio,
we apply stout smearing to the gauge links entering the
gluonic operatorOμν

g [36]. Use of an analytic link smearing
is essential for performing the perturbative computation of
the renormalization. Using smearing and a total of 209 400
measurements, we obtain the bare matrix element to a few
percent accuracy [11].

In Table I, we summarize the statistics used for the
calculation for both quark and gluon observables.
Renormalization.—We determine the renormalization

functions for the axial-vector charge and one-derivative
vector operators nonperturbatively, in the regularization-
invariant (RI0) momentum scheme. We employ a momen-
tum source and perform a perturbative subtraction of
Oðg2a∞Þ terms [37,38]. This subtracts the leading cutoff
effects yielding only a weak dependence of the renormal-
ization factors on the renormalization scale ðapÞ2 for which
the ðapÞ2 → 0 limit can be reliably taken. Lattice QCD
results for both the isovector and isoscalar axial charge
are renormalized nonperturbatively with Zisovector

A ¼
0.7910ð4Þð5Þ and Zisoscalar

A ¼ 0.7968ð25Þð91Þ, respectively
[35,37]. The one-derivative vector operator is nonpertur-
batively renormalized with ZDV ¼ 1.1251ð27Þð17Þ in the
MS scheme at 2 GeV [37]. The renormalization of the
gluon operator is carried out perturbatively. Being a flavor
singlet operator, it mixes with other operators, the quark
singlet operator in particular. Owing to this mixing,
appropriate renormalization conditions require computa-
tion of more than one matrix element. We perform the
computation in one-loop lattice perturbation theory and use
the action parameters that coincide with the ensemble of
this work. To avoid the introduction of an intermediate RI-
type scheme, we define a convenient renormalization
prescription that utilizes both dimensional and lattice
regularization results (see Ref. [11] for additional details).
The physical result of the gluon momentum fraction can

be related to the bare matrix elements hxibareg and hxibareq
using hxig ¼ Zgghxibareg þ Zgq

P
qhxibareq , where Zgg and Zgq

are computed to one loop. We note that the mixing
coefficient Zgq is a fraction of the statistical errors on
our results. Therefore, for the quark momentum fractions,
we renormalize with the nonperturbatively determined
renormalization factor, neglecting the mixing with the
gluon operator. We note that the perturbative and non-
perturbative renormalization functions ZDV differ by 10%,
which is a much larger effect than the mixing.
In Fig. 1, we show the result of the three analyses carried

out to extract the disconnected contribution to the isoscalar
axial charge guþd

A and the quark momentum fraction hxiuþd.
Taking the value at ts ¼ 14a ¼ 1.3 fm is consistent with
the result from the two-state fit and summation method, for
both quantities. We take the plateau value at ts ¼ 14a as
our final result and assign as systematic error due to excited
states the difference between this value and the mean value
determined from the two-state fit. The same analysis is
performed for the strange and charm disconnected con-
tributions. The analysis for the valence quark contributions
at lower statistics was presented in Ref. [39], and it is also
followed here.
Results.—In Fig. 2, we present our results for the up,

down, and strange quark contributions to the nucleon axial
charge that yield the quark intrinsic spin contributions to

TABLE I. Statistics used in this calculation. ts is the sink time
separation relative to the source which is used for the connected
three-point functions. Ncfg is the number of configurations and
Nsrc the number of source positions per configuration. NHP

r (NLP
r )

is the number of high- (low-) precision stochastic vectors used for
the quark loops.

Connected Disconnected
ts=a Ncfg Nsrc Observable Ncfg Nsrc NHP

r NLP
r

10,12,14 579 16 Light, gA 2136 100 2250 0
16 542 88 Light, hxiq 1219 100 1000 0
18 793 88 Strange, gA 2153 100 63 1024

Strange, hxiq 2153 100 30 960
Gluon, hxig 2094 100 � � � � � �
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the nucleon spin. Since we are using a single ensemble, we
cannot directly assess finite volume and lattice spacing
effects. However, previous studies carried out usingNf ¼ 2
and Nf ¼ 2þ 1þ 1 twisted mass fermion (TMF) ensem-
bles at heavier than physical pion masses for the connected
contributions allow us to assess cutoff and volume effects
[21,40]. In Fig. 2, we include TMF results for Nf ¼ 2

ensembles at mπ ∼ 465 MeV, one with lattice spacing
a ¼ 0.089 fm, and one with a ¼ 0.07 fm, with a similar
spatial lattice length L, as well as, at mπ ¼ 260 MeV, one
with a ¼ 0.089 fm, and another with a ¼ 0.056 fm and a
similar L. At both pion masses, the results are in complete
agreement as we vary the lattice spacing from 0.089 to
0.056 fm, pointing to cutoff effects smaller than our
statistical errors. For assessing finite volume effects, we
compare two Nf ¼ 2 ensembles, both with a ¼ 0.089 fm
and mπ ∼ 300 MeV, but one with mπL ¼ 3.3 and the other
with mπL ¼ 4.3. The values are completely compatible,
showing that volume effects are also within our statistical
errors. To assess possible strange quenching effects, we
compare in Fig. 2 results for the connected contributions
usingNf ¼ 2 andNf ¼ 2þ 1þ 1 TMF ensembles, both at
mπ ∼ 375 MeV, and find very good agreement [47]. The
latter is a high statistics analysis yielding very small errors.
We note, however, that the limited accuracy of the Nf ¼ 2

result would still allow a quenching effect of the order of its
statistical error, and only an accurate calculation using
Nf ¼ 2þ 1þ 1 simulations at the physical point would be
able to resolve this completely. In Fig. 2, we also compare
recent lattice QCD results on the strange intrinsic spin,
1
2
ΔΣs, at heavier than physical pion masses and find

agreement among lattice QCD results, indicating that lattice

artifacts are within the current statistical errors. We note,
specifically, that all lattice QCD results yield a nonzero and
negative strange quark intrinsic spin contribution 1

2
ΔΣs. We

also compute the charm axial charge and momentum
fraction at the physical point, and we find that both are
consistent with zero.
To determine the total quark angular momentum Jq, we

need, beyond Aq
20ð0Þ, the generalized form factor Bq

20ð0Þ,
which is extracted from the nucleon matrix element
of the vector one-derivative operator for Q2 ≠ 0 as
described in Ref. [21]. For the isovector case, we find
Bu−d
20 ð0Þ ¼ 0.313ð19Þ, and for the isoscalar connected

contribution Buþd;conn
20 ð0Þ ¼ 0.012ð20Þ. We observe that

the latter is consistent with zero, as is the disconnected
contribution Buþd;disc

20 ðQ2 ¼ 0.074 GeV2Þ. Similarly, the
strange and charm Bs;c

20 ðQ2Þ values are zero, which implies
that Js;c ¼ 1

2
hxis;c. In what follows, we will also take the

gluon Bg
20ð0Þ to be zero, and thus Jg ¼ 1

2
hxig.

Our final values for the quark total and angular momen-
tum contributions are given in Table II. The value of
hxiu−d ¼ 0.194ð9Þð11Þ is on the upper bound relative to the

FIG. 1. The disconnected sea quark contribution (denoted by
disc.) to the isoscalar axial charge (upper panel) and momentum
fraction (lower panel) as a function of the sink-source time
separation ts for the plateau method (circles) and as a function of
the lower time value of ts used in the fits for the summation (green
triangles) and two-state fit (blue square) methods. The open circle
indicates the final value and the band its statistical error, while the
open square is the value taken to determine the systematic error
due to excited state contamination.

FIG. 2. The up (upper panel), down (center panel), and strange
(lower panel) quark intrinsic spin contributions to the nucleon
spin versus the pion mass. Open symbols show results only for
the connected contributions, while filled symbols denote both
connected and disconnected contributions using the same en-
semble as the connected only scenario. The red diamonds are the
results of this work. The circles are Nf ¼ 2 results, and the
squares are Nf ¼ 2þ 1þ 1 [30,31,40] by ETMC. We compare
this with lattice QCD results from other OðaÞ-improved actions
from Ref. [41] (the filled magenta triangle) by the QCDSF
Collaboration [42] (the light blue cross), and by the CSSM/
QCDSF Collaboration [43] (the yellow filled right triangle). We
also show results using a hybrid action from the PNDME
Collaboration [44] (the open blue triangles). The experiment is
denoted by black asterisks [45,46].
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recent phenomenological value extracted in Ref. [7].
Determinations of hxiu−d within lattice QCD using simu-
lations with larger than physical pion masses have yielded
larger values, an effect that is partly understood to be due to
the contribution of excited states to the ground state matrix
element [48]. We note that our value is in agreement with
that determined by the RQCD Collaboration using Nf ¼ 2

clover fermions at pion mass of 151 MeV [49], and that
lattice QCD results for hxiu−d and Ju−d for ensembles with
larger than physical pion masses including ours are in
overall agreement [40]. Results within lattice QCD for the
individual quark hxiq and Jq contributions are scarce. The
current computation is the first one using dynamical light
quarks with physical masses. A recent quenched calcu-
lation yielded values of hxiu;d consistent with ours.
In Fig. 3, we show schematically the various contribu-

tions to the spin and momentum fraction. Using a different
approach from ours, the gluon helicity was recently
computed within lattice QCD and found to be 0.251(47)
(16) [8]. Although we instead compute the gluon total
angular momentum and the two approaches have different
systematic uncertainties, a non-negligible gluon contribu-
tion to the proton spin is obtained within both approaches
make non-negligible gluon contributions to the proton spin.
Conclusions.—In this Letter, we present a calculation of

the quark and gluon contributions to the proton spin,
directly at the physical point.
Having a single ensemble, we can assess only

lattice systematic effects due to the quenching of the
strange quark, the finite volume, and the lattice spacing
indirectly from other twisted mass ensembles. A direct
evaluation of these systematic errors is currently not
possible and will be carried out in the future. Individual
components are computed for the up, down, strange, and
charm quarks, including both connected (valence) and
disconnected (sea) quark contributions. Our final numbers
are collected in Table II. The quark intrinsic spin from
connected and disconnected contributions is 1

2
ΔΣuþdþs¼

0.299ð12Þð3Þjconn−0.098ð12Þð4Þjdisc¼0.201ð17Þð5Þ, while
the total quark angular momentum is Juþdþs ¼
0.255ð12Þð3Þjconn þ 0.153ð60Þð47Þjdisc ¼ 0.408ð61Þð48Þ.

Our result for the intrinsic quark spin contribution agrees
with the upper bound set by a recent phenomenological
analysis of experimental data from the COMPASS
Collaboration [50], which found 0.13 < 1

2
ΔΣ < 0.18.

Using the spin sum, one would deduce that Jg ¼ 1
2
− Jq ¼

0.092ð61Þð48Þ, which is consistent with taking Jg ¼
1
2
hxig ¼ 0.133ð11Þð14Þ via the direct evaluation of the

gluon momentum fraction, which suggests that Bg
20ð0Þ is

indeed small. Furthermore, we find that the momentum
sum is satisfied as

P
qhxiq þ hxig ¼ 0.497ð12Þð5Þjconnþ

0.307ð121Þð95Þjdisc þ 0.267ð12Þð10Þjgluon ¼ 1.07ð12Þð10Þ,
as is the spin sum of quarks and gluons giving
JN ¼ P

qJq þ Jg ¼ 0.408ð61Þð48Þ þ 0.133ð11Þð14Þ ¼
0.541ð62Þð49Þ, resolving a long-standing puzzle.

We thank all members of ETMC for an enjoyable
collaboration, and Fernanda Steffens in particular for the
fruitful discussions. We acknowledge funding from the
European Union’s Horizon 2020 research and innovation
program under Marie Sklodowska-Curie Grant Agreement
No. 642069. M. C. acknowledges financial support from the
National Science Foundation under Grant No. PHY-
1714407. This work used computational resources from
the Swiss National Supercomputing Centre (CSCS) under
ProjectsNo. s540,No. s625, andNo. s702, from the Johnvon
Neumann Institute for Computing on the Jureca and
BlueGene/Q Juqueen systems at the research center in
Jülich from a Gauss allocation on SuperMUC with ID
No. 44060.

[1] J. Ashman et al. (European Muon Collaboration), Phys.
Lett. B 206, 364 (1988).

[2] J. Ashman et al. (European Muon Collaboration), Nucl.
Phys. B328, 1 (1989).

[3] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, Rev.
Mod. Phys. 85, 655 (2013).

[4] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 90,
012007 (2014).

TABLE II. Our results for the intrinsic spin (1
2
ΔΣ), angular (L),

and total (J) momentum contributions to the nucleon spin and to
the nucleon momentum hxi, in the MS scheme at 2 GeV, from up
(u), down (d), and strange (s) quarks and from gluons (g), as well
as the sum of all contributions (Tot.), where the first error is
statistical and the second systematic due to excited states.

1
2
ΔΣ J L hxi

u 0.415(13)(2) 0.308(30)(24) −0.107ð32Þð24Þ 0.453(57)(48)
d −0.193ð8Þð3Þ 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s −0.021ð5Þð1Þ 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g � � � 0.133(11)(14) � � � 0.267(22)(27)
Tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

FIG. 3. (Left panel) Nucleon spin decomposition. (Right panel)
Nucleon momentum decomposition. All quantities are given in
the MS scheme at 2 GeV. The striped segments show valence
quark contributions (connected), and the solid segments the sea
quark and gluon contributions (disconnected).

PRL 119, 142002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

142002-5

https://doi.org/10.1016/0370-2693(88)91523-7
https://doi.org/10.1016/0370-2693(88)91523-7
https://doi.org/10.1016/0550-3213(89)90089-8
https://doi.org/10.1016/0550-3213(89)90089-8
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/PhysRevD.90.012007
https://doi.org/10.1103/PhysRevD.90.012007


[5] P. Djawotho (for the STAR Collaboration), Nuovo Cimento
Soc. Ital. Fis. 036C, 35 (2013).

[6] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Phys. Rev. Lett. 113, 012001 (2014).

[7] S. Alekhin, J. Blümlein, S. Moch, and R. Placakyte, Phys.
Rev. D 96, 014011 (2017).

[8] Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J.
Glatzmaier, K.-F. Liu, and Y. Zhao, Phys. Rev. Lett. 118,
102001 (2017).

[9] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou,
Ch. Kallidonis, G. Koutsou, K. Jansen, C. Wiese, and
A. V. Avils-Casco, Proc. Sci., LATTICE2016 (2016) 153
[arXiv:1611.09163].

[10] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, C.
Kallidonis, G. Koutsou, K. Jansen, H. Panagopoulos, F.
Steffens, A. Vaquero, and C. Wiese, Proc. Sci., DIS2016
(2016) 240 [arXiv:1609.00253].

[11] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K.
Jansen, H. Panagopoulos, and C. Wiese, Phys. Rev. D 96,
054503 (2017).

[12] C. Alexandrou, EPJ Web Conf. 137, 01004 (2017).
[13] M. Constantinou, in Proceedings of the 22nd International

Symposium on Spin Physics (SPIN 2016), Urbana, IL, 2016
(to be published).

[14] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz (ALPHA
Collaboration), J. High Energy Phys. 08 (2001) 058.

[15] R. Frezzotti and G. C. Rossi, J. High Energy Phys. 08
(2004) 007.

[16] A. Abdel-Rehim et al. (ETM Collaboration), Phys. Rev. D
95, 094515 (2017).

[17] C. Alexandrou and C. Kallidonis, Phys. Rev. D 96, 034511
(2017).

[18] K. Osterwalder and E. Seiler, Ann. Phys. (Berlin) 110, 440
(1978).

[19] R. Frezzotti and G. C. Rossi, J. High Energy Phys. 10
(2004) 070.

[20] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997).
[21] C. Alexandrou, J. Carbonell, M. Constantinou, P. A.

Harraud, P. Guichon, K. Jansen, C. Kallidonis, T. Korzec,
and M. Papinutto, Phys. Rev. D 83, 114513 (2011).

[22] C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou,
P. A. Harraud, P. Guichon, K. Jansen, T. Korzec, and M.
Papinutto, Phys. Rev. D 83, 094502 (2011).

[23] C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou,
P. A. Harraud, P. Guichon, K. Jansen, T. Korzec, and M.
Papinutto, Phys. Rev. D 83, 045010 (2011).

[24] G. Martinelli and C. T. Sachrajda, Nucl. Phys. B316, 355
(1989).

[25] K. Bitar, A. D. Kennedy, R. Horsley, S. Meyer, and P. Rossi,
Nucl. Phys. B313, 377 (1989).

[26] G. S. Bali, H. Neff, T. Düssel, T. Lippert, and K. Schilling,
Phys. Rev. D 71, 114513 (2005).

[27] H. Neff, N. Eicker, T. Lippert, J. W. Negele, and K.
Schilling, Phys. Rev. D 64, 114509 (2001).

[28] C. Michael and C. Urbach (ETM Collaboration), Proc. Sci.,
LAT2007 (2007) 122 [arXiv:0709.4564].

[29] C. McNeile and C. Michael, Phys. Rev. D 73, 074506
(2006).

[30] C. Alexandrou, M. Constantinou, V. Drach, K.
Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko,
and A. Vaquero, Comput. Phys. Commun. 185, 1370 (2014).

[31] A. Abdel-Rehim, C. Alexandrou, M. Constantinou, V.
Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, and
A. Vaquero, Phys. Rev. D 89, 034501 (2014).

[32] G. S. Bali, S. Collins, and A. Schafer, Comput. Phys.
Commun. 181, 1570 (2010).

[33] A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou,
and A. Vaquero Avilés-Casco, Phys. Rev. Lett. 116, 252001
(2016).

[34] C. Alexandrou et al., Phys. Rev. D 95, 114514 (2017).
[35] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K.

Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero
Aviles-Casco, Phys. Rev. D 96, 054507 (2017).

[36] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501
(2004).

[37] C. Alexandrou, M. Constantinou, and H. Panagopoulos,
Phys. Rev. D 95, 034505 (2017).

[38] C. Alexandrou, M. Constantinou, T. Korzec, H.
Panagopoulos, and F. Stylianou, Phys. Rev. D 83, 014503
(2011).

[39] A. Abdel-Rehim et al., Phys. Rev. D 92, 114513 (2015); 93,
039904(E) (2016).

[40] C. Alexandrou, M. Constantinou, S. Dinter, V. Drach, K.
Jansen, C. Kallidonis, and G. Koutsou, Phys. Rev. D 88,
014509 (2013).

[41] G. S. Bali et al. (QCDSF Collaboration), Phys. Rev. Lett.
108, 222001 (2012).

[42] M. Engelhardt, Phys. Rev. D 86, 114510 (2012).
[43] A. J. Chambers et al. (CSSM and QCDSF/UKQCD

Collaborations), Phys. Rev. D 92, 114517 (2015).
[44] T. Bhattacharya, V. Cirigliano, S. D. Cohen, R. Gupta,

H.-W. Lin, and B. Yoon (Precision Neutron Decay Matrix
Elements (PNDME) Collaboration), Phys. Rev. D 94,
054508 (2016).

[45] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D
75, 012007 (2007).

[46] J. Blumlein and H. Bottcher, Nucl. Phys. B841, 205 (2010).
[47] We find 1

2
ΔΣu ¼ 0.431ð11Þ and 1

2
ΔΣd ¼ −0.148ð7Þ for the

Nf ¼ 2 ensemble, which is consistent with 1
2
ΔΣu ¼

0.436ð2Þ and 1
2
ΔΣd ¼ −0.142ð1Þ for the Nf ¼ 2þ 1þ 1

ensemble.
[48] G. S. Bali, S. Collins, M. Deka, B. Glässle, M. Göckeler, J.

Najjar, A. Nobile, D. Pleiter, A. Schäfer, and A. Sternbeck,
Phys. Rev. D 86, 054504 (2012).

[49] G. S. Bali, S. Collins, B. Glässle, M. Göckeler, J. Najjar,
R. H. Rödl, A. Schäfer, R. W. Schiel, A. Sternbeck, and W.
Söldner, Phys. Rev. D 90, 074510 (2014).

[50] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
753, 18 (2016).

PRL 119, 142002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

142002-6

https://doi.org/10.1103/PhysRevLett.113.012001
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1103/PhysRevLett.118.102001
https://doi.org/10.1103/PhysRevLett.118.102001
http://arXiv.org/abs/1611.09163
http://arXiv.org/abs/1609.00253
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1051/epjconf/201713701004
https://doi.org/10.1088/1126-6708/2001/08/058
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1103/PhysRevD.96.034511
https://doi.org/10.1103/PhysRevD.96.034511
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1088/1126-6708/2004/10/070
https://doi.org/10.1088/1126-6708/2004/10/070
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevD.83.114513
https://doi.org/10.1103/PhysRevD.83.094502
https://doi.org/10.1103/PhysRevD.83.045010
https://doi.org/10.1016/0550-3213(89)90035-7
https://doi.org/10.1016/0550-3213(89)90035-7
https://doi.org/10.1016/0550-3213(89)90324-6
https://doi.org/10.1103/PhysRevD.71.114513
https://doi.org/10.1103/PhysRevD.64.114509
http://arXiv.org/abs/0709.4564
https://doi.org/10.1103/PhysRevD.73.074506
https://doi.org/10.1103/PhysRevD.73.074506
https://doi.org/10.1016/j.cpc.2014.01.009
https://doi.org/10.1103/PhysRevD.89.034501
https://doi.org/10.1016/j.cpc.2010.05.008
https://doi.org/10.1016/j.cpc.2010.05.008
https://doi.org/10.1103/PhysRevLett.116.252001
https://doi.org/10.1103/PhysRevLett.116.252001
https://doi.org/10.1103/PhysRevD.95.114514
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.95.034505
https://doi.org/10.1103/PhysRevD.83.014503
https://doi.org/10.1103/PhysRevD.83.014503
https://doi.org/10.1103/PhysRevD.92.114513
https://doi.org/10.1103/PhysRevD.93.039904
https://doi.org/10.1103/PhysRevD.93.039904
https://doi.org/10.1103/PhysRevD.88.014509
https://doi.org/10.1103/PhysRevD.88.014509
https://doi.org/10.1103/PhysRevLett.108.222001
https://doi.org/10.1103/PhysRevLett.108.222001
https://doi.org/10.1103/PhysRevD.86.114510
https://doi.org/10.1103/PhysRevD.92.114517
https://doi.org/10.1103/PhysRevD.94.054508
https://doi.org/10.1103/PhysRevD.94.054508
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1016/j.nuclphysb.2010.08.005
https://doi.org/10.1103/PhysRevD.86.054504
https://doi.org/10.1103/PhysRevD.90.074510
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1016/j.physletb.2015.11.064

