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The linear growth of operators in local quantum systems leads to an effective light cone even if the
system is nonrelativistic. We show that the consistency of diffusive transport with this light cone places an
upper bound on the diffusivity: D≲ v2τeq. The operator growth velocity v defines the light cone, and τeq is
the local equilibration time scale, beyond which the dynamics of conserved densities is diffusive. We verify
that the bound is obeyed in various weakly and strongly interacting theories. In holographic models, this
bound establishes a relation between the hydrodynamic and leading nonhydrodynamic quasinormal modes
of planar black holes. Our bound relates transport data—including the electrical resistivity and the shear
viscosity—to the local equilibration time, even in the absence of a quasiparticle description. In this way, the
bound sheds light on the observed T-linear resistivity of many unconventional metals, the shear viscosity of
the quark-gluon plasma, and the spin transport of unitary fermions.
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Operator growth, diffusion, and local equilibration.—In
a local quantum spin system, operators can spread at most
linearly in time, a fact that can be deduced via repeated
commutation with the Hamiltonian [1,2]. This microscopic
Lieb-Robinson bound establishes an effective “light cone”
for the propagation of signals, the spread of entanglement,
and the generation of correlations, even in nonrelativistic
systems [3,4]. Although Lieb-Robinson theorems have
been rigorously proven only in certain classes of models,
there is a large and growing body of evidence that local
quantum systems obey a finite speed limit more generally.
The linear spatial growth of entanglement and correlation
with time has been widely observed in analytic [5,6],
numerical [7–12], and experimental [13–15] modeling of
one-dimensional systems, as well as in higher-dimensional
models that can be studied through holographic duality
[16–19]. We will denote the velocity defining the operator
growth light cone, that bounds any spread of entanglement
or correlation, by v.
Another property of (ergodic) local systems is that

conserved densities diffuse at late times and long distances;
see, e.g., [20]. Diffusion implies that the retarded Green’s
function for the conserved density n takes the late time and
long-wavelength form

h½nðt; xÞ; nð0; 0Þ�i ∝ ∇2
e−x

2=ð4DtÞ

td=2
ð1Þ

for t≳ τeq and jxj≳ leq. Here, D is the diffusion constant,
and d is the dimensionality of space. We also introduced the
local equilibration time τeq and the local equilibration
length scale leq. These are the scales beyond which the
hydrodynamic derivative expansion holds and will play a
central role in our discussion.

We will combine the above two facts to derive an upper
bound on D. In the context of relativistic theories, a large
literature exists on the tension between diffusion and the
usual relativistic light cone; see [21,22] for discussions. We
elaborate on this connection below. The logic of our argu-
ment is more closely related to well-known bounds on the
low-energy coupling constants of relativistic theories that
follow from causality and unitarity [23–25]. In some cases,
such as Refs. [24,26], the bounds arise because a coupling in
the low-energy effective theory violates causality, which is
allowed only if the coupling is small enough to push the
violation beyond the cutoff scale. The existence of an
operator growth light cone makes it possible to apply the
same logic to nonrelativistic theories and leads to the bound
on D.
Diffusion constants directly control transport via

Einstein relations [20]. For example, the electrical conduc-
tivity is related to charge diffusivity by σ ¼ χD, where the
charge compressibility χ ¼ ∂n=∂μ. We will also apply the
bound to spin, heat, and momentum transport.
Derivation of the bound.—The diffusive Green’s func-

tion (1) is large for jxj≲ ffiffiffiffiffiffi

Dt
p

. The numerical prefactor in
this inequality will not be fixed by our argument. At early
times, the region of spacetime jxj≲ ffiffiffiffiffiffi

Dt
p

includes points
that are at jxj > vt, outside of the operator growth light
cone. See Fig. 1. Thus, it seems that diffusion allows us to
send signals outside of the light cone. However, the Green’s
function becomes diffusive only at times t≳ τeq. The
tension between diffusive behavior and the linear-in-time
growth of operators is therefore avoided if

D≲ v2τeq: ð2Þ
The simple observation (2) is our main result, relating three
independently defined quantities. Indeed, D, τeq, and v
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have been independently computed in several models
[10–12], and the bound (2) is found to hold. The numerical
factor in (2) is undetermined, because the edge of the
diffusive region is defined in the low-energy, long-wave-
length theory, so it is smeared by an amount τeq in the time
direction and leq in the space direction. The bound can
nonetheless be said to be parametrically obeyed or satu-
rated with respect to variables such as the temperature. The
argument leading to (2) assumes that the local equilibration
length scale leq ∼ vτeq. Allowing leq and τeq to be
independent leads to the more general bound
D≲max ðvleq; v2τeqÞ. We also assumed that the operator
growth light cone is enforced even at early times t ∼ τeq, as
is indeed observed [7–9,13].
In many-body localized systems, the light cone curve

becomes t ¼ ex=ξ [27,28]. Our argument then leads to the
known fact that the diffusivity D ¼ 0.
In weakly interacting systems, lower bounds on the

diffusivity follow from applying an uncertainty principle
argument to the lifetime of quasiparticles [29,30]. It
remains possible that lower bounds on diffusivities also
exist away from weak coupling, as has been conjectured
in Refs. [29–31]. The bound (2) goes in the same
direction as the upper bound on diffusivity found in
Refs. [32,33] for certain models with long-wavelength
inhomogeneities.
Microscopic vs low-energy velocities.—The velocity v

that defines the operator growth light cone is a microscopic
velocity. It bounds the spatial support of the operator
Oðt; x0Þ≡ eiHtOðx0Þe−iHt as a function of time, up to
exponentially small tails, in any state. Here Oðx0Þ is
supported only close to some point x0. On a lattice, the
velocity is set by the lattice spacing a and a characteristic
microscopic energy scale J according to v ∼ Ja=ℏ [2]. If
the typical velocity of low-energy carriers of the conserved

density is substantially lower than this velocity, the bound
(2) is very weak.
There are two important cases where the low-energy

excitations that carry the conserved densities do in fact have
a microscopic velocity. The first are relativistic systems,
where the characteristic velocity is the speed of light. The
second are degenerate Fermi systems, where the characteri-
stic velocity is the Fermi velocity v ∼ vF ∼ Ja=ℏ. For these
cases, we can expect the diffusion bound (2) to be a
nontrivial constraint.
In other circumstances, the velocity of low-energy exci-

tations will be set by the low temperature T, with, e.g.,
vT ∼ T1−1=z. This is much slower than any microscopic
velocity when the dynamical critical exponent z > 1. It may
be possible to strengthen the bound in such cases. A well-
defined velocity is the butterfly velocity vB that controls the
chaotic growth of the commutator h−½Aðt; xÞ; Að0; 0Þ�2i ∼
eðt−x=vBÞ=τL [34,35]. Here τL is the Lyapunov time scale
[36,37]. The butterfly velocity tracks the characteristic
velocity of low-energy excitations, with vB ∼ vT [31,38],
and indeed has the flavor of an effective state-dependent
Lieb-Robinson or operator growth velocity [35,38–42].
Furthermore, computations in specific holographic
[31,43–48], perturbative quantum field theoretic [49–52],
and 1þ 1 dimensional [11,53,54] systems have found
diffusion controlled by the butterfly velocity, with
D ∼ v2BτL.
The time scales τL and τeq are defined in quite different

ways. In many cases τeq ∼ τL, but below we give an
example with τeq ≫ τL. The definition of τeq as the time
scale beyond which conserved quantities diffuse was
essential to make the general argument for (2) above.
Indeed, there are known cases with D ≪ v2BτL [32,33],
as well as cases with D ≫ v2BτL [31,46]. The natural
conjecture for a stronger bound extending (2) is then
D≲ v2Bτeq [55].
Quasiparticle systems and a bound on τeq.—If a system

has long-lived quasiparticles with velocity vqp and lifetime
τqp, the diffusivity is given by D ∼ v2qpτqp. Equilibration is
slow in such systems, because interactions are weak and
typically τeq ∼ τqp. Our bound (2) then simply becomes
vqp ≲ v, which certainly has to be true, or else the
quasiparticles could carry signals outside the operator
growth light cone.
In a weakly coupled system, the diffusivity can be lower

bounded by the uncertainty principle applied to the single-
particle excitations [29,30]. Define the effective mass of the
quasiparticles by εqp ¼ 1

2
m�v2qp, where εqp is the quasipar-

ticle energy. Then we can write

D ∼ v2qpτqp ∼
εqpτqp
m�

≳ ℏ
m�

: ð3Þ

Such quantum-limited diffusion has been directly observed
in ultracold atomic Fermi liquids. Approximate saturation
of (3) occurs as unitarity is approached and the quasipar-
ticle description breaks down [57–60]. Compatibility of the

Diffusion
allowed

Diffusion
disallowed

FIG. 1. The diffusive Green’s function is large outside the
operator growth light cone at early times. It follows that the true
Green’s function must not be diffusive over that regime.
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lower bound (3) with the upper bound (2) requires that in a
quasiparticle system

τeq ≳ ℏ
m�v2

: ð4Þ

At low temperatures, the bound (4) is weaker than the
bound τeq ≳ ℏ=kBT conjectured in Ref. [61].
Holographic theories and quasinormal modes.—The

best-studied set of holographic theories are conformal field
theories (CFTs) in d spatial dimensions placed at a nonzero
temperature. In a CFT, the transverse momentum diffu-
sivity is given by the shear viscosity according to D ¼
η=ðsTÞ [62]. Throughout this subsection only, we set
c ¼ kB ¼ ℏ ¼ 1. The bound (2) can therefore be written

η

s
≲ v2Tτeq: ð5Þ

In a nonzero temperature CFT, v ¼ 1 and Tτeq is a
temperature-independent number.
The local equilibration time scale τeq is the lifetime of the

longest-lived nonhydrodynamic excitation. The damped
excitations of black holes are called quasinormal modes,
the singularities of the frequency-space retarded Green’s
function. Thus, we can write [63]

τeq ¼
1

Imωqnm ; ð6Þ

where ωqnm is the complex frequency of the nonhydrody-
namic quasinormal mode closest to the real axis. In fact, (6)
is not quite enough. The quasinormal frequencies depend
on the wave vector k, and at large k the quasinormal modes
become arbitrarily close to the real axis (see, e.g., [64]). The
bound (2) is concerned only with the local thermalization
time scale at long distances where hydrodynamics is valid.
Therefore, we can minimize (6) over k restricted to
k < l−1

eq ∼ ðvτeqÞ−1. In practice, the lowest nonhydrody-
namic quasinormal frequencies do not have a strong k
dependence for small k. Thus, it is sufficient to put k ¼ 0
in (6).
Einstein gravity: The leading nonhydrodynamic qua-

sinormal modes in the shear sector of Einstein gravity have
been studied in detail in Ref. [65]. Using (6), together with
the k ¼ 0 shear sector quasinormal frequencies computed
in Ref. [65], we obtain Tτeq ≈ 0.09; 0.12; 0.15 in d ¼ 2, 3,
4, respectively. These values are in agreement with the
bound (5), with v ¼ 1 and given the value of η=s ¼
1=ð4πÞ ≈ 0.08 [29,66].
Higher derivative gravity: In higher derivative theories

of gravity, η=s can become parametrically large. Two
examples of such theories were studied in Ref. [67], where
it was shown that the ratio η=ðsTτeqÞ nonetheless converges
to a constant such that (5) holds with v ¼ 1. These theories
are toy models for exploring the possible behaviors of

retarded Green’s functions. However, large higher deriva-
tive corrections typically lead to inconsistencies in the full
theory [24,68,69].
Linear axion spacetimes: In “linear axion” spacetimes,

a parameter m controls the strength of momentum degra-
dation due to broken translations [70]. This determines the
leading nonhydrodynamic quasinormal mode, which has
been characterized in Ref. [71]. The heat diffusion constant
and butterfly velocity have been obtained in Ref. [43].
When m is small, D=τeq ∼ v2B ∼ 1. When m is large,
D=τeq ∼ v2B ∼ T=m. The bound (2) is found to be saturated
in both limits if we use the butterfly velocity v → vB. If we
use the microscopic light cone velocity v ¼ 1, then the
bound is always satisfied but is far from saturated with
strong momentum relaxation. In this example, replacing
τeq → τL, the Lyapunov time, in the bound (2) would not be
valid. At weak momentum relaxation τL ≪ τeq [43], and
hence D ≫ v2BτL ∼ v2τL in that limit.
The case of a long-lived momentum.—With weakly

broken translation invariance, the total momentum decays
at a “transport rate” τ−1tr that is slow compared to all other
nonhydrodynamic excitations, that instead decay at the rate
τ−1eq . When τ−1tr ≪ τ−1eq , the decay of the total momentum can
itself be described within hydrodynamics. One obtains
(e.g., [20,71]) [72]

σðω; kÞ ¼ −iωGR
nnðω; kÞ
k2

¼ iωχD
iωð1 − iτtrωÞ −Dk2

: ð7Þ

At k ¼ 0, this is the standard Drude formula for the
conductivity. The behavior at nonzero k depends upon
τtrω. At the lowest frequencies, τtrω ≪ 1, Eq. (7) describes
the diffusion of charge. At higher frequencies with
τtrω ≫ 1, there is a linearly dispersing mode with
ω2 ¼ ðD=τtrÞk2. Because τtr is large, this latter regime is
still within the validity of a hydrodynamic description.
Signals cannot propagate faster than the operator growth
velocity, and hence

D ≤ v2τtr; ð8Þ

recovering the bound (2) with τeq → τtr, as τtr controls the
crossover from diffusion to sound and now with a precise
numerical factor.
It has long been appreciated in the context of relativistic

hydrodynamics that there is a tension between diffusion
and causality [74,75]. An overview of the issues can be
found in Refs. [21,22]. Causality violation in the diffusion
equation is superficially resolved by including a new
transport coefficient τπ at second order in the hydrody-
namic derivative expansion. This leads to the same Green’s
function as (7), with τtr replaced by τπ. Argumentation
similar to that in the previous paragraph, with v → c, the
speed of light, has then been used to bound diffusion in that
context, leading to the suggestion D ≤ c2τπ . However, as
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emphasized in Ref. [21], such arguments are generically
uncontrolled, as they involve keeping one out of infinitely
many nonhydrodynamic modes. In the discussion above, in
contrast, we have considered the case of a single long-lived
nonhydrodynamic mode that can arise due to weakly
broken translation invariance.
Similar considerations to the above apply to superfluids,

with the supercurrent operator weakly relaxed by the
transverse motion of vortices [76].
Resistivity of nonquasiparticle metals.—The resistivity

of many families of strongly correlated materials exhibits
the temperature dependence ρ ∼ T. Many of these are bad
metals, with large resistivities that are incompatible with a
quasiparticle description [77–79]. The conventional Drude
formula ρ ¼ 1=σ ¼ m=ðne2τÞ is therefore not applicable.
Nonetheless, the resistivity of these same materials does
appear to be associated with an underlying time scale
1=τeq ∼ T extracted from, for example, the width of peaks
in the optical conductivity σðωÞ. See, e.g., [30,80–82] for
overviews of strongly correlated materials with
ρ ∼ 1=τeq ∼ T. The cuprates are especially well character-
ized in this regard, with the τeq ∼ ℏ=ðkBTÞ time scale
widely seen in optical data [83–85] as well as in single-
particle observables [86].
The diffusivity bound (2) implies a lower bound on the

electrical resistivity:

ρ≳ 1

χ

1

v2
1

τeq
: ð9Þ

This expression is a nonquasiparticle generalization of the
conventional Drude formula, relating the resistivity to a
time scale—as seen in the T-linear resistivity materials. It
becomes the Drude formula in the quasiparticle limit. At
degenerate temperatures kBT ≪ EF, with EF the Fermi
energy, the important temperature dependence in the
resistivity bound (9) indeed comes from τeq. The suscep-
tibility χ ∼ ne2=EF and the velocity v ∼ vF are temperature
independent [87]. vF can be extracted from angle-resolved
photoemission data that reveal a well-defined single-
particle peak in momentum space [91], despite broadening
in frequencies [92].
Spin diffusion in unitary Fermi liquids.—The relaxation

to equilibrium of a spin imbalance in a 3D unitary Fermi
liquid was characterized in Ref. [57]. In addition to spin
diffusion at late times, the experiment also sees frictional
damping at an intrinsic (geometry-independent) rate called
the spin drag coefficient Γsd, giving the equilibration time
τeq ∼ 1=Γsd. At low temperatures, the spin diffusion con-
stant is found to be Ds ≈ 6ℏ=m and the equilibration time
τeq ≈ 10ℏ=EF. In this degenerate regime we can estimate
v2 ∼ v2F ∼ EF=m. It follows that the diffusivity bound (2)
holds and is approximately saturated. The values of Ds and
1=Γsd just quoted are both overestimated by the same factor
due to averaging over the inhomogeneous trapping

potential. Allowing for this geometric effect, the homo-
geneous diffusivity is estimated in Supplemental Material
of Ref. [57] to beDs ∼ ℏ=m (see also [93,94]), closer to the
diffusivities discussed below.
Transverse spin diffusivity has also been measured in a

2D unitary Fermi liquid to be D⊥
0 ≈ 2ℏ=m [60]. That work

did not obtain an independent relaxation rate. However, a
separate experiment on a very similar system measured the
damping rate ΓQ of a quadrupole mode [95]. In the strongly
interacting regime the intrinsic relaxation time scale is
given by τeq ∼ ΓQ=ω2⊥, where ω⊥ is the harmonic trapping
frequency [96]. The low-temperature, strongly interacting
data in Ref. [95] then lead to τeq ≈ 25ℏ=EF. Again
estimating v2 ∼ v2F ∼ EF=m at low temperatures, we see
that the diffusivity bound (2) is satisfied and is not
especially close to saturation in this case. This comparison
may be imperfect as the equilibration time scale and
diffusivity pertain to different modes.
Viscosity.—The conjectured lower bound on the shear

viscosity [29] has motivated measurements of the viscosity
of strongly interacting media [97–99].
In the quark-gluon plasma, τeq ∼ 0.6 fm=c [100]. Using

T ∼ 360 MeV and setting v ¼ c, the momentum transport
bound (5) becomes η=s≲ 1.1ℏ=kB, which is consistent
with the measurement η=s ∼ 0.15ℏ=kB [98,101].
For Galilean systems, such as ultracold atomic Fermi

liquids, the momentum transport bound becomes
D ¼ η=ðnmÞ ≲ v2τeq. The low-temperature viscosity of a
Fermi liquid tuned to unitarity has been measured to be
η=n ≈ 0.4ℏ [97,102]. An independent measurement of the
local equilibration time in the same elliptic flow experi-
ments from which the shear viscosity is extracted is needed
to verify our bound in these systems.
Conclusion.—We obtained the bound (2) relating three

independent quantities: diffusivity, equilibration time scale,
and light cone velocity. Empirically, the bound holds in a
wide variety of physical systems at strong and weak
coupling. These results motivate a more systematic and
simultaneous determination of the three quantities in, e.g.,
ultracold atomic liquids and unconventional metals.
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