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We solve an adaptive search model where a random walker or Lévy flight stochastically resets to
previously visited sites on a d-dimensional lattice containing one trapping site. Because of reinforcement, a
phase transition occurs when the resetting rate crosses a threshold above which nondiffusive stationary
states emerge, localized around the inhomogeneity. The threshold depends on the trapping strength and on
the walker’s return probability in the memoryless case. The transition belongs to the same class as the self-
consistent theory of Anderson localization. These results show that similarly to many living organisms and
unlike the well-studied Markovian walks, non-Markov movement processes can allow agents to learn about
their environment and promise to bring adaptive solutions in search tasks.
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Random searches have sparked enormous interest in
recent years, as they find many applications in biology,
physics, and computer science [1]. In typical settings, a target
hidden in space has to be found by a searcher. The focus is
commonly on first passage time statistics or theminimization
of the mean searching time. Many theoretical approaches
assume searchers lacking memory, which justifies
Markovian dynamics such as the random walk (RW)
[2–5]. In contrast, allowing the searcher to gather and retain
information about the environment may induce new adaptive
behaviors, which can evolve in time as a result of experience.
Namely, a learning process becomes possible. In engineer-
ing, a variety of robotic search tasks can be optimized by
sampling more often spatial regions where targets are more
likely to be present (see, e.g., Ref. [6]). Likewise, animals
seeking food, water, or mates find it energetically convenient
to revisit locations associated with successful searches
[7–11]. Exploiting regions rich in resources relies on two
forms of memories, or a combination thereof: one that uses
the environmental memory [12], and one that uses the animal
cognitive capabilities [13]. The former,which iswell studied,
is accomplished by depositing chemical substances, e.g.,
pheromone in ants, or physical marks to indicate the direct
route to specific profitable locations [14]. In this case a
searcher would not require any memory, it could simply
follow the scent trail once found. The latter form of resource
exploitation, which inspires the present study, uses the actual
ability of a searcher to remember previous positions and
revisit them preferentially [15]. Importantly, optimal uptake
of available resources is often accomplished by a trade-off
between frequently returning to known areas and randomly
exploring uncharted ones [16–18].
Path-dependent processes such as random walks with

preferential revisits are mathematically challenging. For
basic models on homogeneous lattices, the simple question

whether asymptotic behaviors are diffusive or spatially
localized is hard to tackle [19–21]. Even less is understood
on how spatial inhomogeneities representing resources may
affect the properties of these processes, although an increas-
ing number of biologically motivated models have been
studied numerically [17,22–24]. Here, we solve analytically
a model that combines randommotion with a standard linear
reinforcement scheme [25], allowing us to understand how
spatial learning can emerge during a search. We find that
above a critical threshold of memory use, non-Markovian
effects can completely suppress diffusion at large times and
localize thewalk around a trapping site. This nonequilibrium
phase transition is accompanied by a diverging length scale
and bears close similarities with the Anderson localization
transition of waves in random media [26].
Our approach is based on diffusion with resetting, a class

of processes that have attracted a lot of attention for random
search applications in the past few years [27–36]. In those
processes, standard diffusion is interrupted by stochastic
resetting events that relocate the random walker back to its
starting position (or some fixed position), leading to the
emergence of nonequilibrium stationary states (NESSs).
Extensions including memory, where resetting can occur
to any previously visited position, have also been studied
[37–39].Here, let us consider awalkerwith positionXt on an
infinite d-dimensional cubic lattice with unit spacing, where
the time variable t is discrete and the starting position is
X0 ¼ x0. The lattice contains one inhomogeneity, represent-
ing a water hole or a food patch, located at the origin.
Depending on its position in space, the walker obeys two
types of dynamics. (i) It follows a reinforced motion that
combines diffusion and resetting to locations visited in the
past [22,37,40], or (ii) it remains trapped at the origin for
some time.More precisely, at each time step t → tþ 1: (a) If
thewalker is not at the inhomogeneity, with probability 1 − q
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it selects a random displacement lt drawn from a symmetric
distribution pðlÞ and Xtþ1 ¼ Xt þ lt (RW motion). With
the complementary probability q the walker resets to a site
visited in the past, that is Xtþ1 ¼ Xt0 where t0 is a random
integer uniformly chosen in the interval ½0; t�. Therefore, the
probability of choosing a particular site for relocation is
proportional to the accumulated amount of time spent at that
site (linear reinforcement). (b) If the walker occupies the
inhomogeneity (Xt ¼ 0) it stays there at tþ 1 with proba-
bility γ (trapping or feeding), or moves according to the rules
(a) with probability 1 − γ.
By defining Prob½Xt0 ¼ n andXt ¼ 0� as the joint prob-

ability of being at n at time t0 and at the origin at time t, the
above dynamics can be written as follows:

Pnðtþ 1Þ ¼ ð1− qÞ
X
l

pðlÞð1− γn−lÞPn−lðtÞ þ γnPnðtÞ

þ qð1− γÞ
tþ 1

Xt

t0¼0

Prob½Xt0 ¼ n and Xt ¼ 0�

þ q
tþ 1

Xt

t0¼0

Prob½Xt0 ¼ n and Xt ≠ 0� ð1Þ

where PnðtÞ ¼ Prob½Xt ¼ n� and γn ¼ γδn;0. The first two
terms of the rhs ofEq. (1) describe the randommovement and
trapping of the walker, respectively. The last two terms of
Eq. (1) account for the probability to reset to site n (if it has
been visited at an earlier time t0) from a site that can be either
the trapping site 0 or another site. The term 1=ðtþ 1Þ is
the uniform probability distribution of the variable t0.
Equation (1) describes a non-Markov process with infinite
memory taking place in an inhomogeneous medium. In the
absence of spatial heterogeneity (γ ¼ 0) the model exhibits
unbounded (albeit very slow) diffusion for any memory
strength or resetting probability (0<q<1): limt→∞PnðtÞ ¼
0∀n [37,40].When γ ≠ 0, each visit at the origin tends to last
longer than at any other site and we ask whether reinforce-
ment can suppress diffusion altogether and attract the
dynamics toward a NESS, namely, Pn ≡ limt→∞PnðtÞ ≠ 0,
centered around 0 and independent of the walker initial
position x0. When the NESS is reached we say that the
walker has localized as a result of adaptation by learning
(see Fig. 1).
To gain valid insights on the dynamics of the learning

searcher, we consider an approximate version of the model.
We make the assumption (to be checked later on) that at
large times Xt0 and Xt become uncorrelated:

Prob½Xt0 ¼ n and Xt ≠ 0�≃ Pnðt0Þ½1 − P0ðtÞ�: ð2Þ

Similarly, Prob½Xt0 ¼nandXt¼0�≃Pnðt0ÞP0ðtÞ. Replacing
these expressions into Eq. (1) and substituting PnðtÞ and
Pnðt0Þ by Pn in the limit ðt; t0Þ → ∞, we obtain an equation
satisfied by the NESS:

Pn ¼ ð1 − qÞ
X
l

pðlÞPn−l þ qPnð1 − γP0Þ

þ γP0½δn;0 − ð1 − qÞpðnÞ�; ð3Þ

and valid for any number of dimensions. Note that if the
summands have a finite limit, the last two terms of Eq. (1) do
not vanish at large t. We note P0 ≡ P0 as the asymptotic
probability of occupying the inhomogeneity, a quantity yet to
be determined. We introduce the discrete Fourier transform
~fðkÞ≡P

nfne
−ik·n [41]. Transforming Eq. (3) yields:

~PðkÞ ¼ γP0½1 − ð1 − qÞ ~pðkÞ�
ð1 − qÞ½1 − ~pðkÞ� þ qγP0

: ð4Þ

The constant P0 is determined self-consistently from the
inverse transform of Eq. (4) evaluated at n ¼ 0: P0 ¼
ð2πÞ−d RB ddk ~PðkÞ, where B is the first Brillouin zone:
−π < ki < π for i ¼ 1;…; d. After rearrangements, any
solution P0 ≠ 0 obeys the transcendental equation:

1

ð2πÞd
Z
B

ddk
ð1 − qÞ½1 − ~pðkÞ� þ qγP0

¼ 1 − γ

qγð1 − γP0Þ
: ð5Þ

Fixing γ > 0, the model exhibits a phase transition if there
exists a critical qc ∈ ð0; 1Þ such that Eq. (5) does not have
any root for q < qc (in such case, only the trivial solution

FIG. 1. Average total number of visits to the starting site
x0 ¼ ð−5; 5Þ (green triangles) and to the inhomogeneity (blue
diamonds) as a function of time, for a 2d walker with q ¼ 0.2
(γ ¼ 0.9). At early times, the walker slowly diffuses around x0

(orange light disk in the insets). After the inhomogeneity (red
dark disk) has been found, it becomes steadily revisited,
indicating spatial learning and localization.

PRL 119, 140603 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

140603-2



P0 ¼ 0 exists). Hence, setting P0 ¼ 0 in Eq. (5) gives the
threshold qc:

qc ¼
ð1 − γÞPno return

γ þ ð1 − γÞPno return
; ð6Þ

where Pno return ¼ ð2πÞdfRB ddk=½1 − ~pðkÞ�g−1 is the well-
known probability for the Markovian random walk on the
infinite lattice to never come back to its starting site [41]. This
is a remarkably simple result, reminiscent of the phenom-
enology of the Anderson transition: a delocalization or
localization transition can exist at some qc > 0 (or γc > 0
if q is held fixed) if Pno return > 0, i.e., if the process with
q ¼ 0 (no resetting) may never return to its starting site, such
as the nearest neighbor (NN) RW in d ≥ 3. Conversely,
recurrent processes likeRWs in 1d and 2d havePno return ¼ 0
and thus admit localized solutions whenmemory is switched
on to any strength q > 0. We emphasize that for a pure RW
(q ¼ 0), a single impurity of any finite strength fγ < 1 is not
enough to localize the walker. We also mention that the case
q ¼ 1 is pathological since the walker stays immobile and
thus cannot find the origin, unless x0 ¼ 0.
Before discussing properties of the critical point, we

exactly solve Eq. (4) in the particular 1d case with NN
hopping, where ~pðkÞ ¼ cosðkÞ. By Fourier inversion we
find (see Ref. [42]):

Pn ¼ γP0δn;0 þ ð1 − γÞP0a−jnj; ð7Þ
with a ¼ 1þ uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð2þ uÞp
, where u ¼ γqP0=ð1 − qÞ,

and

P0 ¼
−ð1 − qÞð1 − γÞ2 − qγ2

qγð1 − 2γÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − qÞð1 − γÞ2 þ qγ2�2 þ ðqγÞ2ð1 − 2γÞ

p
qγð1 − 2γÞ ; ð8Þ

for γ ≠ 1=2. When γ ¼ 1=2, one simply obtains P0 ¼ q.
Equation (8) shows that P0 > 0 for any γ > 0 and q > 0:

as previously announced localized solutions always exist in
1d for any memory and inhomogeneity strengths. The
probability of presence decays exponentially with the
distance to the origin. Figure 2 displays P0 as a function
of q for different γ, as given by Eq. (8). Instead of solving
Eq. (1) numerically, which is difficult, we have performed
Monte Carlo simulations of rules (a) and (b). The very good
agreement obtained suggests that our decorrelation
approximation might be exact at large times. The discrep-
ancy observed at small q and γ is attributed to the fact that
the asymptotic time regime is very long to reach in
simulations: For γ ¼ 0, diffusion is logarithmic and P0

tends to 0 as 1=
ffiffiffiffiffiffiffi
ln t

p
[37]. To accelerate the convergence to

the NESS, we set x0 ¼ 0 in all the simulations presented
here [44].
We next study some of the 1d cases in which

Pno return > 0, implying a phase transition at a nonzero

qc (see Ref. [42]). For this purpose we consider a
symmetric Lévy flight (LF) whereby

pðlÞ ¼ C=jlj1þμ; l ¼ �1;�2;�3;…; ð9Þ
with index 0 < μ ≤ 1 [45,46]. Figure 3 displays P0 as a
function of q (for μ ¼ 1=2 and several γ), as given by a
numerical solution of Eq. (5) and by Monte Carlo simu-
lations of the walker dynamics. A very good agreement is
obtained. As expected, at larger simulation times the
variations of P0 become steeper around the critical point
(left panel).
From Eq. (6), we draw the 1d phase diagram in the ðγ; qÞ

plane in Figure 4. The thick (green) dashed curve represents
the line of critical points for μ ¼ 0.9. Processes charac-
terized by Pno return → 1, can be obtained either by taking
the limit μ → 0 in 1d or the limit d → ∞ (where any
process is expected to become highly transient). These
cases correspond to the diagonal qc ¼ 1 − γ.
The general critical behavior of P0 in any d, for generic

LFs including the standard RW case, is obtained from a
Taylor expansion of Eq. (5) near qc. Since the small k
regime dominates, one uses the expansion 1 − ~pðkÞ≃
Kμjkjμ (for LFs) or 1 − ~pðkÞ≃D0jkj2 (for normal RWs, if
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FIG. 2. P0 as a function of q in 1dwith NN hopping. Solid lines
are given by Eq. (8) and symbols by Monte Carlo simulations of
the rules (a) and (b) (at t ¼ 105).
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FIG. 3. Phase transition in 1d for Lévy flights with μ ¼ 1=2.
Left: The thick (black) solid lines are given by Eq. (5) for the
t ¼ ∞ limit, and the symbols by simulations up to different times
t (γ ¼ 0.9). The parameter τ is explained in the text. Right: P0 for
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and 0.2519, respectively (t ¼ 105 in simulations).
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pðlÞ has finite variance) [46]. By analyzing the integral in
Pno return, it is easy to see [42] that for d > dc ¼ μ the walk
is transient, implying Pno return > 0 and consequently from
Eq. (6), qc > 0. In contrast, for d < dc ¼ μ, the walk is
recurrent, implying Pno return ¼ 0 and hence qc ¼ 0. Near
q ¼ qc, we find [42]

P0 ∼ ðq − qcÞβ; ð10Þ

in all cases, where β ¼ 1 for d > 2μ, β ¼ μ=ðd − μÞ for
μ < d < 2μ, while β ¼ d=ðμ − dÞ for d < μ (in this last
case qc ¼ 0). Normal RWs correspond to the special case
μ ¼ 2: if d < 2, the transition takes place at qc ¼ 0 and
β ¼ d=ð2 − dÞ; if 2 < d < 4, then β ¼ 2=ðd − 2Þ; if d > 4,
then β ¼ 1. These exponents and critical dimensions are
actually identical to those of the self-consistent theory
(SCT) of Anderson localization [26,47,48]. In this problem
the diffusion coefficient describing wave transport in
disordered media obeys a self-consistent relation similar
to Eq. (5).
Once P0 is known, the large jnj behavior of Pn is readily

obtained. At small k, Eq. (4) gives, for the normal RW case
and q > qc,

~PðkÞ≃ q�

Djkj2 þ q�
; with q� ¼ qγP0; ð11Þ

and D ¼ ð1 − qÞD0 a rescaled diffusion constant. Up to a
prefactor, this form coincides with the correlation function
of the Gaussian model of second-order phase transitions
with scalar order parameter, ~CðkÞ ∝ 1=ðjkj2 þ ξ−2Þ, which
stems, like the SCT of Anderson localization, from a one-
loop approximation. Hence ξ ¼ ðD=q�Þ1=2 is the localiza-
tion length. The inverse transform of Eq. (11) decays
exponentially at large jnj, see Ref. [28] or Ref. [49] for its
precise form in all d. From Eqs. (10) and (11), one deduces
that ξ always diverges as ðq − qcÞ−ν near qc, with ν ¼ β=2.
Therefore, ν ¼ d=ð4 − 2dÞ if d < 2; ν ¼ 1=ðd − 2Þ if

2 < d < 4; and ν ¼ 1=2 if d > 4. These exponents are
again those of the SCT of Anderson localization [47].
Remarkably, the distribution Eq. (11) also has the same

expression as the NESS generated by diffusion with
stochastic resetting to the unique site 0 at rate q�
[28,50]. Therefore, thanks to learning, the walker effec-
tively behaves at large times like a memoryless walker that
resets to the inhomogeneity only. The selection of the
resetting point is an emergent property, and not imposed
like in Refs. [28,50]. The effective resetting rate q� is ∝ P0

and thus vanishes at q ¼ qc, where the walker is no longer
able to adapt to its environment.
In the case of Lévy flights,Djkj2 is replaced by Kjkjμ in

Eq. (11): this expression also coincides with the NESS for a
LF with resetting at the origin [31,50]. In 1d and for
μ ∈ ð0; 2Þ, the inversion gives the Linnik distribution [51]:

Pn ≃
�
K
q�π

sin

�
πμ

2

�
Γðμþ 1Þ

�
jnj−1−μ þ RðnÞ ð12Þ

with jRðnÞj < ½ðK=q�Þ2Γðμþ 1Þ=π sinðπμ=2Þ�jnj−1−2μ.
The walker is thus power-law localized, with exponent
−ð1þ μÞ at large jnj. Figure 5 shows the good agreement
between Pn obtained from numerical inversion and simu-
lations at μ ¼ 0.5.
The robustness of the localization phenomenon can be

probed by incorporating resource depletion and refreshing
in rule (b). Let us assume that the inhomogeneity becomes
empty each time the walker leaves it (γ set to 0), and then
recovers (0 → γ) at a later time with rate τ. Figure 3, left
displays a simulation curve of P0 for τ ¼ 0.1, whose shape
is similar to that of the base model.
In summary, we have demonstrated with a solvable model

that random walkers with resetting and memory are able to
learn by reinforcement and adapt to features of their
environments. Adaptation is revealed through a localization
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phase transition which emerges around a trapping site. The
localized walker asymptotically behaves as if it reset to the
trapping site solely, with an effective resetting rate that
vanishes at criticality. Apart from applications in cognition
and ecology, the results presented here could motivate
applications for pattern recognition, the tracking of mobile
objects, or for developing algorithms that solve difficult
optimization problems. Our study also establishes a long
sought formal analogy between the localization of path-
dependent random walks and that of waves in disordered
media [20]. Despite the radically different physical nature,
non-Markovian stochastic processes with resetting may
prove useful for studying Anderson transitions.
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