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We propose an information-theoretic framework to quantify multipartite correlations in classical and
quantum systems, answering questions such as what is the amount of seven-partite correlations in a
given state of ten particles? We identify measures of genuine multipartite correlations, i.e., statistical
dependencies that cannot be ascribed to bipartite correlations, satisfying a set of desirable
properties. Inspired by ideas developed in complexity science, we then introduce the concept of
weaving to classify states that display different correlation patterns, but cannot be distinguished by
correlation measures. The weaving of a state is defined as the weighted sum of correlations of every
order. Weaving measures are good descriptors of the complexity of correlation structures in
multipartite systems.
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Introduction.—Statistical relations in measurement out-
comes, i.e., correlations, are powerful tools to investigate
multipartite systems, employed in (quantum) information
theory, statistical mechanics, condensed matter theory,
network theory, neuroscience, and complexity science
[1–4]. Correlations describe global properties that cannot
be inferred from the features of the system parts, e.g.,
phases of many-body systems [5]. They are also resources.
Entanglement, a kind of quantum correlation, enables
speed-up in quantum information processing [6].
Yet, the very notion of genuine multipartite correlations

still generates discussion [7]. There is no consistent way to
quantify dependencies that do not manifest bipartite corre-
lations, encoding joint properties of k > 2 particles instead,
while witnesses of multipartite entanglement of at least
order k have been proposed [8–15]. A further problem is
that computing correlations is not always sufficient to fully
describe multipartite correlation patterns. Equally corre-
lated networks of multivariate variables can display differ-
ent structures and properties [16,17]. Also, quantum states
can be correlated in inherently inequivalent ways [18–20].
Here we propose a framework to describe genuine

multipartite correlations in classical and quantum systems.
We identify distance-based measures that satisfy a set of
desirable properties when parts of the systems are added or
discarded, and local operations are performed. We show
that adopting the relative entropy allows for simplifying
computations and meeting even stronger constraints. We
then introduce the notion of weaving to classify multipartite
states by studying how correlations scale with their order.
The weaving of a state is given by the weighted sum of
genuine multipartite correlations of any order, inheriting
the properties of correlation measures. We compute the
weaving of correlated classical and quantum states. In such

cases, states that have equal total correlations or highest
order correlations, but display a different correlation
pattern, take different weaving values.
Quantifying genuine multipartite correlations.—A finite

dimensionalN-partite quantum systemSN¼fS½1�;S½2�;…;
S½N�g is described by a density matrix ρN , ρ½i� being
the states of the subsystems S½i�;i¼1;2;…;N. In this
framework, classical probability distributions pα1;…;αN
of N-variate discrete variables are embedded in
density matrices of the form

P
α1;…;αNpα1;…;αN jα1;…;αNi×

hα1;…;αN j;
P

α1;…;αNpα1;…;αN¼1, where fαig are orthonor-
mal basis elements in the Hilbert spaces of each sub-
system S½i�. The correlations in SN depend on the tensor
product structure of its Hilbert space, induced by the
partition fS½i�g. This is usually dictated by physical
constraints, e.g., spatial separation of the subsystems.
Indeed, even maximally entangled states are factorizable
by changing the system structure [21,22]. The total
correlations in the system represent the information
encoded in ρN , which is unaccessible to an observer
knowing the states of each subsystem, ρ½i�. We extend the
argument to define genuine multipartite correlations of
order higher than k, 2 ≤ k ≤ N − 1, as the missing
information to a more informed observer, who knows
the states ρkj of clusters forming a coarse grained partition
fSk1 ;Sk2 ;…;Skmg,

P
m
j¼1 kj ¼ N, kj ≤ k, where each

cluster Skj includes up to k subsystems, e.g.,
Sk1 ¼ fS½1�;S½2�;…;S½k1�g. Genuine N-partite correla-
tions, the highest order, are the information that is still
missing when clusters including subsets of up to N − 1
subsystems are accessible, kj ≤ N − 1.
The set of states describing clusters of up to k sub-

systems is
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Pk ≔
�
σN ¼⊗m

j¼1 σkj ;
Xm
j¼1

kj ¼ N; k ¼ maxfkjg
�
: ð1Þ

For example, given N ¼ 3, the set P1 consists of the
product states⊗3

j¼1 σ½j�, P2 includes P1 and the products of
bipartite and single-site states, i.e., σ2 ⊗ σ1 and their
permutations, while P3 contains P2 and the nonfactorizable
density matrices σ3. The complete chain reads
P1 ⊂ P2 ⊂ … ⊂ PN−1 ⊂ PN , where PN is the Hilbert space
of the global system (Fig. 1). Note that a pure state in Pk is a
k-producible state [23]. Genuine multipartite correlations
of order higher than k are then quantified by the distance of
the global state to the set Pk,

Dk→NðρNÞ ≔ min
σ∈Pk

DðρN; σÞ; ð2Þ

where the function D is non-negative, Dðρ; σÞ ≥ 0,
Dðρ; σÞ ¼ 0 ⇔ ρ ¼ σ, and contractive under completely
positive and trace preserving (CPTP) maps Φ, Dðρ; σÞ ≥
D(ΦðρÞ;ΦðσÞ), ∀ρ, σ. Then, any distance identifies a
measure of k-partite correlations,

DkðρNÞ ≔ Dk−1→NðρNÞ −Dk→NðρNÞ: ð3Þ
As expected, the total correlations are given by the
distance to the set of statistically independent N-partite
states, which equals the sum of the correlations of any
order, D1→NðρNÞ ¼ minσ∈P1

DðρN; σÞ ¼
P

k D
kðρNÞ. For

example, the genuine bipartite correlations in a tripartite
state are computed as the difference between total corre-
lations and genuine tripartite correlations, D2ðρ3Þ ¼
D1→3ðρ3Þ −D2→3ðρ3Þ, which are nonzero if and only if
the state is not factorizable with respect to any bipartite cut.
The minimization in Eq. (2) is cumbersome for a generic

distance D, but significantly simplified by employing the

relative entropy SðρjjσÞ ¼ −SðρÞ − Trðρ log σÞ, ∀ρ, σ :
suppρ⊆suppσ, ∞ otherwise, SðρÞ ¼ −Trðρ log ρÞ. In
such a case, the closest product state to the global state
is the product of its marginals, min⊗m

i¼1
σki
SðρN jj⊗m

i¼1 σkiÞ¼
SðρN jj⊗m

i¼1 ρkiÞ¼
P

m
i¼1SðρkiÞ−SðρNÞ, TrN−kρN ¼ ρk

[13,24]. Correlations of order higher than k are then given
by the distance to ~Pk ⊂ Pk, ~Pk ≔ f⊗m

j¼1 ρkj ;
P

m
j¼1 kj ¼ N;

k ¼ maxfkjgg. Therefore, the genuine k-partite correla-
tions are measured by

SkðρNÞ ¼ Sk−1→NðρNÞ − Sk→NðρNÞ: ð4Þ

For systems invariant under subsystem permutations, the
subadditivity of the von Neumann entropy, SðρiÞþ
SðρjÞ ≥ SðρijÞ, makes the closest product state ~ρkN the
most “compact” one, being the tensor product state of
⌊N=k⌋ clusters of k subsystems and a cluster of N −
⌊N=k⌋k ¼ N mod k subsystems, Sk→NðρNÞ ¼
⌊N=k⌋SðρkÞ þ ð1 − δN mod k;0ÞSðρN mod kÞ − SðρNÞ.
We now verify the consistency of the framework. We

identify reasonable properties characterizing measures of k-
partite correlations, applicable for any order k, by general-
izing the ones proposed for N-partite correlations [7]. We
show that the quantities in Eqs. (2) and (3), for any distance
D, satisfy the criteria 0D − 4D of invariance and monot-
onicity under local operations and changes in the system
partition. We also prove that, by adopting the relative
entropy, stronger yet desirable constraints 0S–5S are met.
(0D–0S) The measures of k-partite correlations are

faithful. They are non-negative, DkðρNÞ ≥ 0, and vanish
if and only if the state does not have k-partite correlations.
(1D)Adding a disjointn-partite system,S0

Nþn ≔ SN∪Sn,
cannot create correlations of order higher than n. If the
state of SN does not have correlations of order higher
than n, ρN ¼⊗m

j¼1 σkj ,
P

m
j¼1 kj ¼ N, n ≥ maxfkjg, then

the state of S0
Nþn is ρN ⊗ ρn, which does not have corre-

lations of order higher than n, the largest factor of the
product being still a state of n or fewer subsystems.
Thus, Dn→NþnðρNþnÞ ¼ Dn→NðρNÞ ¼ 0.
(1S) Adding a disjoint n-partite system cannot increase

correlations of order higher than n. One has Sn→NðρNÞ ¼
SðρN jj~ρnNÞ ¼ SðρN ⊗ ρnjj~ρnN ⊗ ρnÞ ≥ SðρN ⊗ ρnjj~ρnNþnÞ ¼
Sn→NþnðρNþnÞ. For example, given N ¼ 3, adding a bipar-
tite system,n ¼ 2, cannot increase the tripartite correlations.
(2D–2S) Local CPTP maps ΠiΦ½i�;Φ½i� ¼ I1 ⊗…

Φi ⊗…⊗ IN , cannot create correlations of any order k,
and cannot increase the amount of correlations higher than
any order k. Local operations do not change the tensor
product structure of a state, ρN ∈ Pk ⇒ ΠiΦ½i�ðρNÞ ∈ Pk,
ρN∉Pk ⇒ ΠiΦ½i�ðρNÞ∉Pk, so they cannot create correla-
tions of any order, DkðρNÞ ¼ 0 ⇒ Dk(ΠiΦ½i�ðρNÞ) ¼ 0,
∀k. Contractivity under CPTP maps guarantees
Dk→NðρNÞ ≥ Dk→N( ⊗i Φ½i�ðρNÞ), ∀k. This also implies

FIG. 1. Multipartite correlation hierarchy. Given a system of N
particles (blue spheres), the sets Pk, k ¼ 1; 2;…; N, consist of
states displaying up to k-partite correlations. The yellow k spheres
identify the largest subset of a coarse grained partition (the dashed
red lines separate each cluster). The amount of genuine k-partite
correlations in a state is the difference between the distance to the
sets Pk−1 and Pk.
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monotonicity of the highest order of nonzero correlations,
D~kðρNÞ ≥ D~k(ΠiΦ½i�ðρNÞ), ~k¼maxfkg∶Dk→NðρNÞ¼ 0.
Note that an operation on a cluster of n subsystems Φn,
n > 1, can create correlations of order up to kþ n − 1 from
already existing k-partite correlations. A state with nonzero
k-partite correlations reads ⊗m

j¼1 σkj ,
P

m
j¼1 kj¼N,

maxfkjg ≥ k. A map Φn jointly applied to one subsystem
of the largest cluster Smaxfkjg and other n − 1 subsystems
generates correlations of order up to maxfkjgþn−1. For
example, the k-qubit state jaki¼aj0i⊗kþ

ffiffiffiffiffiffiffiffiffiffiffi
1−a2

p
j1i⊗k,

a ∈ ð0; 1Þ, has genuine k-partite correlations
SkðjakiÞ¼2½a2 loga2þð1−a2Þlogð1−a2Þ�. Correlating the
state with an ancillary target qubit by
a CNOT gate creates the state jakþ1i ¼ aj0i⊗ðkþ1Þþffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
j1i⊗ðkþ1Þ, which has kþ1-partite correlations,

Skðjakþ1iÞ ¼ SkðjakiÞ.
(3D) Partial trace of n subsystems cannot increase

correlations of order higher than k < N − n. Let ~ρkN be
the closest N-partite state with up to k-partite correlations.
Then, by contractivity of the distance function,Dk→NðρNÞ ¼
DðρN; ~ρkNÞ ≥ DðρN−n;Trn ~ρkNÞ ≥ Dk→N−nðρN−nÞ.
(3S) Partial trace of N − k subsystems can create up

to k-partite correlations from existing N-partite correla-
tions. Let us consider the classical N-bit state ρcN ¼
ðj0ih0j⊗N þ j1ih1j⊗NÞ=2, which has N-partite correlations.
The marginal state TrN−kρ

c
N ¼ ðj0ih0j⊗k þ j1ih1j⊗kÞ=2,

∀k, has genuine k-partite correlations. Contractivity
ensures SNðρNÞ ≥ SkðρkÞ. The property is then proven,
as k-partite correlations are not necessarily present
in ρcN . One has S

kðρcNÞ¼⌊N=ðk−1Þ⌋−⌊N=k⌋þδNmodk;0−
δNmod ðk−1Þ;0¼⌈N=ðk−1Þ⌉−⌈N=k⌉. For example, given
N ¼ 5, the global state does not have genuine 4-partite
correlations, S2ðρc5Þ¼ 2, S3ðρc5Þ ¼ S5ðρc5Þ ¼ 1, S4ðρc5Þ ¼ 0.
Indeed, the state ρc3 ⊗ ρc2 has more information about the
global state ρc5 than ρc2 ⊗ ρc2 ⊗ ρc1; thus, there are genuine
3-partite correlations, but the state ρc4 ⊗ ρc1 is not more
informative than the 3-vs-2 product (the relative entropy
distance to the global state is equal). Genuine 4-partite
correlations are distilled by tracing away one subsys-
tem, S4ðρc4Þ ¼ 1.
(4D–4S) Distilling n subsystems by fine graining cannot

create correlations of order higher than kþ n, for any k.
Fine graining a subsystem into a cluster of n subsystems,
S½i� →Si0 ¼ fS½ij�g;j¼ 1;…;nþ1, changes the system par-
tition into S0

Nþn¼fS½1�;S½2�;…;S½i−1�;fSijg;S½iþ1�;…;S½N�g.
If the state of the system SN has correlations of order up
to k, ρN ¼ ρk≤N ⊗ ð⊗lj≤k ρljÞ,

P
j lj ¼ N − k, the fine-

graining map creates at most correlations of order kþ n,
ρNþn ¼ ρkþn≤Nþn⊗ ð⊗l≤k ρlÞ. Hence, Dkþn→NþnðρNþnÞ ¼
Dk→NðρNÞ ¼ 0.
(5S) Total correlations are superadditive. It is given a

coarse grained partition fSk1 ;Sk2 ;…;Sklg,
P

l
j¼1 kj ¼ N.

The total correlations in each cluster Skj¼

fS½
P

j−1
m¼1

kmþ1�;S½
P

j−1
m¼1

kmþ2�;…;S½
P

j−1
m¼1

kmþkj�g are quantified

by the multi-information between the single
subsystems forming the cluster, S1→kjðρkjÞ ¼Pkj

n¼1 Sðρ½Pj−1
m¼1

kmþn�Þ − SðρkjÞ, a non-negative extension

of the bipartite mutual information [25–27]. Exploiting
subadditivity, one has

P
l
j¼1 S

1→kjðρkjÞ ¼
P

N
i¼1 Sðρ½i�Þ−P

l
j¼1 SðρkjÞ ≤

P
N
i¼1 Sðρ½i�Þ − SðρNÞ ¼ S1→NðρNÞ, where

the inequality is saturated for product states ρN ¼⊗j ρkj .
That is, the sum of the total correlations in each cluster is
upper bounded by the total correlations in the global
system. For product states, subadditivity also implies
additivity for correlations higher than k, for every k, ρN ¼
⊗j ρkj ⇒ ~ρkN ¼⊗j ~ρ

k
kj
⇒ Sk→NðρNÞ ¼

P
jS

k→kjðρkjÞ.
While being intuitive and simple to phrase, the discussed

properties are not met by heavily employed measures and
indicators of multipartite correlations. Covariances of local
observablesO½i�, hΠiO½i�iρN − ΠihOiiρN , do not satisfy such
criteria. They can vanish, for any choice of fO½i�g, in the
presence of classical and quantum multipartite correlations
[7,28,29]. An alternative correlation witness measures the
ability of multipartite systems to extract work from local
environments [7]; yet it is still unproven whether the
quantity satisfies properties 0D–4D. Another measure of
correlations above order k is the (relative entropy) distance
of the global state to the state with maximal von Neumann
entropy, among the ones with the same marginal states of k
subsystems, SðρN jjσ̄kNÞ; σ̄kN ≔ maxσN∶TrN−kσN¼ρkSðσNÞ [30–
34]. Remarkably, independent lines of thinking converged
to the very same definition. However, such a measure, as
well as a related one given by the trace norm of the
cumulant of the state [29,35], violates contractivity under
local operations in both classical and quantum scenarios
[17,36]. This happens because local operations do change a
state while preserving its tensor product structure, thus
changing the set of states with the same k marginals.
Ranking correlation patterns by weaving.—Having

determined how to quantify genuine multipartite correla-
tions, one observes that equally correlated states, in terms
of total correlations, can display different values of corre-
lations for some order k, and thus different properties.
Assuming N even, a product of N=2 Bell states, e.g.,
jψN=2i ¼ ½1= ffiffiffi

2
p ðj00i þ j11iÞ�⊗N=2, has the same total

correlations of the N-partite GHZ state jGHZNi ¼
1ffiffi
2

p ðj0i⊗N þ j1i⊗NÞ, as measured by the relative entropy,

S1→NðjψN=2iÞ ¼ S1→NðjGHZNiÞ ¼ N, while the latter
exhibits correlations of higher order. On the same hand,
the highest order of correlations is not sufficient to describe
multipartite states. Both the GHZ and the N=2-excitation

Dicke state ½1=
ffiffiffiffiffiffiffiffiffiffi
ð N
N=2Þ

q
�PiPiðj0i⊗N=2 ⊗ j1i⊗N=2Þ, where

the sum is over the permutations fPig of the group
SymðNÞ, have two bits of N-partite correlations. Yet, they
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have different uses for information processing [37,38], and
it is impossible to transform them into each other by local
operations and classical communication [18].
We introduce the concept of weaving to rank classical

and quantum multipartite states by a single index, over-
coming such ambiguities. The idea is to construct a
consistent information-theoretic descriptor of correlation
patterns by counting well-defined genuine multipartite
correlations of every order. A weaving measure is built
as the weighted sum of multipartite correlations,

WDðρNÞ ¼
XN
k¼2

ωkDkðρNÞ ¼
XN−1

k¼1

ΩkDk→NðρNÞ; ð5Þ

where ωk ¼
P

k−1
i¼1 Ωi, ωk ∈ Rþ. For any function D, a

weaving measure is contractive under local operations
and partial trace, WDðρNÞ ≥ WD(ΠiΦ½i�ðρNÞ), WDðρNÞ≥
WDðρkÞ, as it is a sum of contractive quantities (properties
2D and 3D). The relative entropy of weaving WSðρNÞ is
also additive, WSð⊗j ρkjÞ ¼

P
jWSðρkjÞ, being a sum of

additive terms (property 5S). Weaving is then easy to
compute too, being obtained by global and marginal
entropies.
The choice of the weights determines the meaning of a

weaving measure. For ωk ¼ 1, ∀k, it is a measure of total
correlations. For ωl ¼ δkl, ∀l, it quantifies genuine k-
partite correlations. As observed, computing correlations
is not sufficient to discriminate different multipartite states.
Thus, we study correlation scaling, that is, how the
information about the global system scales by accessing
partitions containing clusters of increasing size. This is
captured, for example, by choosing weights proportional to
the correlation order. We calculate the relative entropy
measures of genuine multipartite correlations and weaving,

selecting ωk ¼ k − 1 ⇒ Ωi ¼ 1, ∀i, for highly correlated
classical and quantum states of N particles (Table I). The
quantity unambiguously ranks states with equal total
correlations, or N-partite correlations. As expected, the
weaving of states in tensor product form, e.g., the Bell state
products, scales linearlyOðNÞwith the number of particles.
Indeed, the correlations in the global state are the sum of the
correlations in each product factor. The GHZ state shows
superlinear scalingOðN logNÞ instead. However, the high-
est asymptotic valueOðN2Þ forN qubits is found in theN=2
excitation Dicke state. Such a state has nonzero correlations
at any order, fkD;N=2 ≠ 0, ∀k [39], while the GHZ state has
zero correlationswhenever ⌈N=ðk − 1Þ⌉ ¼ ⌈N=k⌉.Weaving
is proportional to the logarithm of the subsystem dimen-
sion d.
The concept of weaving solves issues that emerged in

previous studies. A measure of “neural complexity” was
proposed to study correlation scaling between binary
variables [40]. The quantity, which we generalize to the
quantum scenario, reads CðρNÞ ¼

P
N−1
k¼1 k=NS1→NðρNÞ−

hS1→kðρkÞi, where the average term is calculated over the
ðNkÞ clusters of k subsystems Sk. A geometric lower bound
is given by the weighted distances to the entropy maxi-
mizers with the same k marginals, CðρNÞ ≥ CgðρNÞ ¼P

kk=NSðρN; σ̄kNÞ [16,17,34,41–43]. The interest in com-
plexity measures was spurred by the association with
enhanced neuronal activity, evaluating the functionality
of equally correlated neural networks. This generated
a debate about whether complexity is the resource gov-
erning information transmission in the brain [44]. Such
quantities have been also applied to study chaotic systems
and cellular automata [17]. Yet, complexity measures
fall short as benchmarks of multipartite correlations. The
neural complexity is not additive under tensor products,

TABLE I. Genuine k-partite correlations, N-partite correlations, total correlations, and weaving (asymptotic scaling for N → ∞) for
the product of N=2 maximally correlated two-bit states; the maximally correlated N-bit state; the product of N=2 Bell states; the N-
partite GHZ state (the expressions hold for N odd as well); N-partite Dicke states with one and N=2 excitations, being hðxÞ ¼ x log x,
and the functions fD;1, fD;N=2 given in Ref. [39]; the maximally correlated N-partite classical state of dimension d; and the product of
N=2 maximally entangled two-qudit states.

ρN; N even Sk; k < N SN S1→N WS;ωk ¼ k − 1

½ðj00ih00j þ j11ih11jÞ=2�⊗N=2 N=2δk;2 0 N=2 N=2

ðj0ih0j⊗N þ j1ih1j⊗NÞ=2 ⌈N=ðk − 1Þ⌉ − ⌈N=k⌉ 1 N − 1 ∼1.13N logN − N

½ 1ffiffi
2

p ðj00i þ j11iÞ�⊗N=2 Nδk;2 0 N N

1ffiffi
2

p ðj0i⊗N þ j1i⊗NÞ ⌈N=ðk − 1Þ⌉ − ⌈N=k⌉ 2 N ∼1.13N logN

1ffiffiffiffiffi
ðN
1
Þ

p P
iPiðj0i⊗ðN−1Þ ⊗ j1iÞ fkD;1 2=N½hðNÞ

−hðN − 1Þ� ∼ 0
hðNÞ − hðN − 1Þ

∼ logN
∼2.61N

1ffiffiffiffiffiffiffi
ð N
N=2Þ

p P
iPiðj0i⊗N=2 ⊗ j1i⊗N=2Þ fkD;N=2 2 N ∼0.01N2

P
d
i¼1 jiihij⊗N=d ð⌈N=ðk − 1Þ⌉

−⌈N=k⌉Þ log d
log d ðN − 1Þ log d ∼ð1.13N logN − NÞ log d

ðPd
i¼1 jiii=

ffiffiffi
d

p Þ⊗N=2 N log dδk;2 0 N log d N log d

PRL 119, 140505 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 OCTOBER 2017

140505-4



e.g., Cðρ2 ⊗ ρ1Þ ¼ 4=3Cðρ2Þ, while the geometric com-
plexity is not contractive under local operations, or under
partial trace, requiring nonanalytical methods to be com-
puted [17,43,45].
Conclusion.—We proposed a consistent information-

theoretic definition of genuine multipartite correlations,
and described how to quantify them. While we did not
discuss the distinction between classical and quantum
correlations, our result suggests a strategy to characterize
genuine multipartite quantum correlations, an open ques-
tion despite recent progresses [10,24,46,47]. Having
defined k-partite correlations as in Eq. (2), classical and
quantum contributions can be identified via the method
employed for total correlations [24], then studying quantum
correlations on their own.
We also introduced weaving, a descriptor of correlation

patterns. Weaving is an alternative to complexity measures,
i.e., a measure of how hard it is to determine the properties
of a system from knowing its parts [48], which satisfies
desirable constraints. An important question to address is
its operational meaning. Specifically, the quantum contri-
bution to the weaving of a state may be a further computa-
tional resource. This would confirm the intuition that
interplaying complexity science and (quantum) information
theory can advance both disciplines [49].
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