PRL 119, 140401 (2017)

PHYSICAL REVIEW LETTERS

Epidemic Dynamics in Open Quantum Spin Systems

Carlos Pc’:rez—Espigares,1 Matteo Marcuzzi,l Ricardo Gutiérrez,l’2 and Igor Lesanovsky1
! School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems,
University of Nottingham, Nottingham NG7 2RD, United Kingdom
2Complex Systems Group, Universidad Rey Juan Carlos, 28933 Mdstoles, Madrid, Spain.
(Received 6 June 2017; published 4 October 2017)

We explore the nonequilibrium evolution and stationary states of an open many-body system that
displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by
recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the
facilitated excitation of Rydberg states competes with radiative decay. These systems approximately
implement open quantum versions of models for population dynamics or disease spreading where species
can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the
dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium
phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with
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particular focus on the role of long-range interactions.
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Introduction.—Cold atoms and ions are versatile plat-
forms for the exploration of nonequilibrium physics.
Recent examples include studies on creation and dynamics
of quasiparticles [1,2], spreading of entanglement and
correlations [3-5], as well as many-body localization in
disordered systems [6-8]. In particular, so-called Rydberg
gases with their strong long-range interactions [9,10]
permit the exploration of open and closed many-body
physics [11-15], with recent experiments probing non-
equilibrium dynamics [15-18], phase transitions [19-22],
and disorder-induced localization phenomena [23].

An intriguing aspect is that in Rydberg gases one can
achieve control over the relative strength of quantum
fluctuations and classical noise [10]. This permits the
exploration of dynamical phenomena in settings that can
be regarded as quantum generalizations of classical non-
equilibrium systems [24,25]. A recent example is a quan-
tum version of the so-called contact process [26,27], a
simple stochastic model for population dynamics featuring
a nonequilibrium phase transition [28] whose character
changes drastically when moving from a purely classical to
a quantum regime.

In this work we shed light on the collective dynamics of
an open quantum system generalization of a general
epidemic process (GEP) [29], belonging to the dynamic
percolation universality class [28,30-32]. In a Rydberg
system, a similar dynamics can be expected by considering
atoms with three relevant states, which can be labeled as
“healthy,” “infected,” and “immune,” where infected sites
have the ability to infect their healthy neighbors, or heal
and become immune. A scenario similar to this has been
recently realized and studied experimentally in Ref. [15],
where a connection to the GEP was conjectured. The scope
of this work is not to propose a quantum simulation
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protocol for GEP, but to demonstrate that, under dominant
classical noise, the system follows the same phenomenol-
ogy as the GEP and undergoes a continuous transition
between two phases: one where the contagion starting from
an initially infected site is unable to percolate throughout
the system, and one where the initial infected site triggers a
self-sustaining wave front (an “outbreak’) which covers an
extensive portion of the system and leaves behind a trail of
immunized sites. In the quantum regime, a mean-field
treatment suggests that the density of immune sites displays
a sequence of jumps resulting from the presence of multiple
wave fronts.

Model.—We consider atoms with three internal states: a
ground state |g) (healthy), a Rydberg state |r) (infected),
and a second stable state |n) (immune). These states are
coupled as depicted in Fig. 1(a): |g) is excited to |r) via a
laser with Rabi frequency Q and detuning A and the state
|r) decays radiatively into |n) at rate x. Note that this
implicitly assumes that the decay from |r) does not proceed
via long-lived intermediate states. Radiative decay from |r)
to |g) is neglected for simplicity (see Ref. [33] for details).
The atoms are placed on a two-dimensional square lattice
with L sites and spacing a, one per site (see, e.g., experi-
ments in Refs. [38,39]).

Collective behavior emerges when the probability for an
atom to undergo the transition |g) — |r) (infection of a
healthy site) depends on the state of its neighbors. For
Rydberg atoms this is achieved by enforcing the so-called
“facilitation” (or “antiblockade”) condition [13,16,40-44].
Here, the detuning A of the excitation laser is set to
compensate the interaction Vyyn between neighboring
atoms, which makes the transition |g) — |r) resonant
provided a neighbor is already in state |r) [Fig. 1(a)].
This situation has already been explored in a two-level
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FIG. 1. (a) Atoms on a square lattice are coherently excited

from the ground state |g) to a Rydberg state |r) with a laser with
Rabi frequency Q. External noise broadens the state |r) (width y)
which decays to a third state |n) at rate k. The laser is off resonant
with a detuning A that compensates the nearest-neighbor inter-
action Vyy (Vayy —A =0). (b) The dominant processes are
facilitation (top row and right column) and decay (left column).
(c) An initial seed leads to the formation of clusters of Rydberg
states (infected sites) which can either be converted to ground
state atoms (healthy sites) or decay to the immune state |n). The
relative strength of the dephasing rate y with respect to Q
determines the nature of the transition. At fixed y, depending
on the ratio Q/k the stationary state is either an ever-expanding
infection leaving a macroscopic fraction of immune sites (super-
critical) or an infection that dies and leaves a lattice partially (not
macroscopically) filled (subcritical).

setup [12,13,16,45], and very recently also in the consid-
ered three-state setting [15]. We remark that it is crucial for
infection to only occur locally, i.e., in the neighborhood of
an already infected site. In our case, it is therefore important
that the interactions decay sufficiently fast with the dis-
tance. A variety of different behaviors are known to emerge
in systems where they do not [46-49].

We now consider a minimal model of the resulting
many-body dynamics in which the density matrix p of the
system evolves under a Lindblad master equation [50]
Owp = —i[H.p| + > [kL(|n) (r)p + vL(ri)p). whose
terms are sketched in Fig. 1(b). The coherent evolution
is governed by the Hamiltonian H = Q3 ", II;0}, where
o} = |9)(r] + )i (gl = of + o}, and II; is a projector
onto the subspace in which exactly one of the nearest
neighbors of k is in state |r). Denoting the set of nearest
neighbors of k by Ay, it reads

m=>r [[ O-r)=>rn+.. (1)

len,  men\{I} leA;

with rp = [r)(r], g« = [9)«(g| and ny = |n},(n|. The dots
denote higher-order terms in the operators ;. This projector
constrains infection to occur only in the neighborhood of a
single infected site. The dissipative dynamics is described
by Lindblad terms L(J)p = JpJ" —{J'J,p}/2. The first
describes decay from |r) to |n) atrate k, the second dephasing
of quantum coherences at rate y. Controlling the dephasing
strength, which is achievable by modifying the excitation
laser linewidth or the temperature of the atoms, allows
switching between classical and quantum regimes [10,51].
In the following, the initial state is always a single atom in
state |r) (infected) in the center of the lattice and all the others
in state |g) (healthy).

Classical regime.—We first consider the regime of
strong dephasing y > Q. Here an effective dynamics can
be defined for the diagonal of the density matrix u;; = 6;;p;i
in the |r,g,n) basis and the corresponding (classical)
master equation reads [52,53]

O =y la (L(o}) + L(07)) +=L(|n)y ()] (2)
k

with @ = 4Q? /y. This means that atoms undergo incoher-
ent state changes from |g) to |r) and vice versa, with a rate
conditioned on their local neighborhood. Furthermore,
decay from |r) to |n) is possible. The process (2) is similar
to a GEP but differs from it by (i) the presence of facilitated
transitions |r) — |g) and (ii) for the stricter constraint that a
single neighboring infected site is required for facilitation,
whereas in the GEP the infection rate is proportional to the
number of infected neighbors.

In a GEP, for fixed k, if the facilitation rate lies below
its critical value, the initial infection is unable to propagate
and the density of immunes N =) ,(n;)/L (L being
the number of sites) vanishes in the thermodynamic limit.
Conversely, above the critical point there is a finite
probability for the infection to percolate [see Fig. 1(c)],
propagating as a single traveling wave front and leaving
behind a finite fraction of immune sites N > 0 [29] (i.e., a
single outbreak takes place).

We start from a uniform mean-field approximation
where we neglect the higher order terms in Eq. (1),
effectively relaxing (ii). Introducing the quantities R =

> {re)/L and G = ), (gi)/L yields

0,G = —4aR(G - R), O;N = kR,
O,R = 4aR(G — R) — kR. (3)

Analogously to what is found for the GEP [29], these equa-
tions feature a constant of motion 9,[log(R — G + «/8a) +
8Na/x| = 0, which permits the determination of the sta-
tionary phase diagram for different initial conditions shown
in Fig. 2(a) [33]. In a uniform approximation, the closest
initial condition to the one we start from is a vanishingly
small density of infections [R(z = 0) = ¢ — 07] and in this
limit the two phases [which are illustrated in Fig. 1(c)] can be
clearly identified, separated by a critical point at a, = «/4.
The nonuniform mean-field dynamics is shown in Fig. 2(b)
and highlights the absence or presence of an outbreak in the
two phases.

We have then performed continuous-time Monte
Carlo simulations of the classical master equation (2).
In Fig. 2(c) we show the stationary density Ngg =
lim,_,,N(z) for different system sizes and observe a
sharpening crossover from a vanishing to a finite-valued
phase when increasing L. The dynamics shows the
expected GEP behavior: for a < a. ~ 1.71k the process
fails to percolate and no outbreak is produced. In the
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FIG. 2. (a) Stationary state of the mean-field equations (3).
Numerical solution after time xt = 500 for different initial
conditions: R(r=0)=¢, G(t=0)=1—¢, and N(t =0) = 0.
(b) Evolution of (n;) on a L =51 x 51 lattice starting at = 0
from a single site in state |r) located at the center of the lattice. In
the supercritical regime the epidemics spreads through the lattice
leaving a region of immune sites behind, while in the subcritical
regime the spreading soon halts. (c) The Monte Carlo simulation
of (2) displays a continuous phase transition as well, with order
parameter profiles becoming sharper the larger the system size.
Snapshots are averaged over 10* realizations and display the
expected qualitative features.

supercritical phase, instead, there is a finite probability of
a single outbreak immunizing a macroscopic portion of
the system. A finite-size scaling analysis performed with
the tabulated critical exponents for the GEP provides an
excellent collapse of the curves [33], establishing the
connection on firm grounds. The full constraint given by
Eq. (1) leads to the same scaling behavior near the
critical point. This could be expected since the
differences between our process and the GEP are of
higher order in the density of infected sites, which
vanishes close to the critical point. More rigorously,
one can show that these terms are irrelevant in a
renormalization-group sense [33].

Rydberg gases.—We now discuss the observability of
this physics in Rydberg gases interacting with a
power-law potential V(r) = C4/r’ (here we consider
the van der Waals case f =6) under antiblockade
conditions. As shown in Refs. [44,53-55], in this case
the constraint II;, is replaced by the operator ', =
AL+ R =32, (rn/ % = %, /P)]}, where R =
(2Cg/aPy)'/? is the so-called dissipative blockade radius
and x,; denotes the position of the kth atom. The lattice
spacing a is taken as the facilitation distance: if just one
nearest neighbor of site k is infected, the rate is maximized,
ie., I’y =1, whereas other configurations lead to its
suppression. In this context, two main effects alter the
physics of the previous model: the possibility of unfaci-
litated infection (|g) <> |r) in the absence of infected
neighbors) and the fact that the interactions extend beyond
nearest neighbors [21]. To gain insight into their role, we
exploit the rapid decay of the tails of V() to truncate the
interaction beyond a distance of two lattice sites,

2
1 2 ! T
'~ 1+ RY I‘ZzeAk’l‘”Zi_m 7). (4)
m |Xk Xm|

where the primed sum runs only over m such that
1 < |x; —X,,| <2. Here we have introduced a parameter
n, which allows us to control the strength of the “long-
range” part. While this parametrization is used here for
convenience, in practice potential shaping techniques can
be applied to modify and possibly suppress the potential
tails; see, e.g., Refs. [55-57].

First, we consider 7 = 0 (nearest-neighbors interactions
only), where I'; is well approximated by the constraint IT,
[Eq. (1)], provided that R > 1. Unfacilitated (spontaneous)
infection can now occur at arate al'po, = /(1 + R%) > 0.
Albeit rare for R > 1, these processes dramatically alter the
stationary-state properties of the system, invariably leading
to Ngg = 1. In the renormalization-group language, the
spontaneous processes constitute a relevant perturbation.
Nevertheless, for sufficiently large R a time scale separa-
tion occurs: the outbreak follows the phenomenology
observed for the idealized case up to times on the order of
xt ~ (1 4+ R?)/(La/x), which is an underestimate of the
mean waiting time of the Poisson process producing sponta-
neous infection. This is illustrated in Fig. 3(a), where we
show the stationary density of immune states Ngg of the
idealized process (rate function ally), together with the
density N(¢) at time k7 = 100 for the Rydberg rates with
R =5, =6, and n = 0. These curves display remarkable
agreement showing that this phase transition in fact underlies
the transient Rydberg dynamics. In the inset of Fig. 3(a) we
moreover show how the characteristic sigmoidal profile
remains stable for a long period of time. In Fig. 3(b)
we show that outbreaks are visible for some time, but
spontaneous infection leads to a rising “background” that

(@ 1

= 05

-ideal case $
cR=5
‘R=2.5

a/k

FIG. 3. (a) Mean density of immune states in the ideal case with
rates all; (1) (black dashed line), and in the Rydberg case (4) at
time k¢ = 100 for R = 5 and n = 0 (blue circles) and for R = 2.5
and different values of 7 = 0, 0.05, 0.1, 1 (red symbols from top
to bottom). The Rydberg model prediction matches the idealized
model’s when the effects of the potential tails and of spontaneous
excitation can be neglected. Inset: Mean density of immune states
using the Rydberg constraint (4) with R =5, # =6, and =0
for increasing values of time xt = 3, 6, 10, 20, 30, 60, 90, and
100. The ideal case with constraints IT, (black dashed line) is
again included for comparison. (b) Evolution of the density of
immune states averaged over 100 realizations (left column) and
for a single realization (right column) on a L = 120 x 120 lattice
for « = 5k, R = 2.5, and n = 0 at two different values of «r.
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eventually overcomes the epidemic process and immunizes
the entire system.

Long-range interactions (1 > 0) counteract the formation
of large clusters of infected and immune sites. For instance,
an isolated atom in state |r) can infect, say, the site directly
below it at the maximal rate, since the nearest-neighbor
interaction compensates the laser detuning. To infect a third
one at the right of the former, however, one has to include
the additional shift due to next-nearest-neighbor inter-
actions, which brings the atomic transition off resonance,
hindering the propagation. We illustrate this by showing in
Fig. 3(a) the density of immune states at time x¢ = 100 for
R = 2.5 and different values of # (all red symbols). As 7 is
increased, it becomes more difficult for the process to
spread. This, however, is a lattice effect; in dense atomic
clouds the transition may reappear. This is suggested by
recent experimental works [13,15,16,21] that reveal col-
lective phenomena in the presence of thermal motion.

Quantum regime.—We now set the dephasing rate y = 0
and study what we refer to as the “quantum case.” We
describe the dynamics via the mean-field equations

a[Gk = —QRka, 8,Rk = QI_?ka — KRk,

— K
0Zy = “2QR (R, — Gy) — 5% ()

G,Nk = K'Rk, 3

Here, Rk(Gk,Nk) = <rk(gkv nk)) and Zk = <0Z> with 0;( =
ilg)i(rl = i|r);(gl. Additionally, Ry = s (r;) and we
assume that initially no coherences are present. Meanfield
will yield qualitatively reasonable predictions unless long-
range correlations develop. As we shall show, the transition
becomes discontinuous in the quantum regime and is
therefore not associated to a divergent correlation length.
Our analysis cannot capture the role of spatial dimension-
ality, but should identify the correct qualitative behavior in
sufficiently high dimension; see Ref. [27]. A more detailed
analysis could be achieved exploiting cluster mean-field
methods [58].

In Fig. 4(a) we show the stationary state density Ngg
resulting from Eqs. (5). A striking difference with respect to
the classical case is the appearance of an oscillating
behavior as a function of the driving parameter Q/«.
From our numerical analysis, it appears that the peaks
become sharper as the size of the system is increased,
with their positions remaining approximately fixed. This
suggests that in the thermodynamic limit a sequence of
discontinuous jumps will form at fixed values Q /K
(j=1,2,...). Note that a standard numerical analysis
of the problem (exact diagonalization, quantum-jump
Monte Carlo simulations) is forbiddingly complex, due
to the exponential scaling of the state space dimension with
the number of atoms.

These jumps feature an intriguing dynamic counterpart:
in the quantum case more than one outbreak can occur. As
shown in Fig. 4(b), if Q/«k is too small (first column), no

; ° ° °
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0.8 x a
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0O —— approximation
0 oo *—
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FIG. 4. (a) Stationary state of the mean-field equations (5). We

show the numerical solution for the immune density at time xt =
500 starting at # = 0 from a single infected site located at the
center of a 51 x 51 lattice. As the driving parameter Q/x is
increased, a recurrent structure of jumps is seen. (b) Snapshots of
the numerical mean-field evolution of the same process for three
values of Q showing how every jump in Ngg is associated to the
appearance of a new outbreak.

outbreak takes place, as in the classical case. For
Q> Q, ~0.83, instead, a single outbreak leaves behind
an approximately uniform density of immunes (second
column). Increasing Q/x further, this residual density
decreases until, at a second threshold value f!z ~ 1.643k,
a second outbreak is generated, which causes the final
density Ngg to jump to a higher value. Every new jump in
Ngg appears to be associated to a new outbreak in the
dynamics.

This repeating pattern allows us, by analyzing the first
jump, to make predictions on the subsequent ones. To this
end, we make two simplifying assumptions compatible
with the numerically observed behavior: (i) every outbreak
leaves behind a uniform density of immunes and (ii) stems
from the center of the lattice. We focus now on a
neighborhood of the center after the (j — 1)th outbreak,
at some time f;. By (i) there is an immune density
Ni(tj)) =NV > 0; by (ii), R;, G, and I, at time ¢;
correspond to their initial conditions rescaled by
(1 = NU)). Therefore, the facilitation rate is bounded by
QR, <4Q(1 —NU)); as a first approximation, the last
factor can be reabsorbed by Q — QU) = Q(1 — NU)). In
other words, the process after 7; proceeds like at = 0 (no

immunes present), but with a modified frequency Q) < Q.
Hence, if QU) < Q, the process stops at Ngg = NI,

up to subextensive additions, meaning that Q < Q;. If

f)l < Q) < f)z, instead, a jth outbreak will be produced,
but a (j+ D)th will not take place, corresponding to

Q; <Q< flj .1, and so forth. All the processes sharing

the same reference frequency QV) are thus equivalent to
the same reference process occurring in the absence of
immunes and their stationary points will lie on a curve
Q(1 — Ngg) = const. The extremal curves in this set,
passing through the top and bottom of the first jump,
are displayed in Fig. 4(a) and bound well the data. With
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an ansatz Ngg o 1/Q for the decrease between jumps,
one can formulate a more detailed prediction out of the
same considerations, represented by the blue line (see
Ref. [33] for details).

Conclusions.—We have analyzed a simple model for
epidemic spreading in an open quantum system, which has
been inspired by recent experimental work [15], and
investigated its connection with the so-called general
epidemic process [29]. In the presence of strong dephasing,
the process has a direct relation to the GEP, displaying
a continuous transition in the same universality class. In the
quantum limit, instead, an intriguingly different physics
emerges featuring a sequence of discontinuous jumps.
This surprising behavior warrants further theoretical and
experimental investigation.
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