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We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip
links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize
loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and
1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the
strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also
find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet
effect that arises if slip links bind to the chromatin at a preferred “loading site.” This emergent collective
behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
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Introduction.—The formation of long-range contacts, or
loops, within DNA and chromosomes critically affects gene
expression [1,2]. For instance, looping between specific
regulatory elements, such as enhancers and promoters, can
strongly increase transcription rates in eukaryotes [1]. The
formation of these loops can often be successfully predicted
by equilibrium polymer physics models, which balance the
energetic gain of protein-mediated interactions with the
entropic loss of looping [3–5].
However, recent high-throughput chromosome confor-

mation capture (“Hi-C”) experiments [6,7] have funda-
mentally challenged the view that equilibrium physics is
sufficient to model chromosome looping. These experi-
ments showed that the genomes of most eukaryotic
organisms are partitioned into domains, many of which
are enclosed within a chromosome loop, 100–1000 kilo-
basepairs (kpb) in size. The bases of these loops tend to be
enriched in binding sites for the CCCTC-binding factor
(CTCF) [7,8]. The DNA-binding motif of CTCF is not
palindromic, so it has a specific direction along DNA.
Surprisingly, Hi-C analyses revealed that most of the CTCF
binding sequences only form a loop if they are in a
“convergent” orientation [Fig. 1(a)] [7,9]. Very few con-
tacting CTCFs have a “parallel” orientation, and virtually
none a “divergent” one. This strong bias is puzzling,
because, if we imagine drawing arrows on the chromatin
fiber (corresponding to CTCF directionality), then two
loops with a pair of convergent or divergent arrows at their
base have the same 3D structure [7,10]; hence, they would
be equally likely according to equilibrium polymer models.
Here we propose a nonequilibrium model that can account
for this bias.
In most cases CTCF-mediated loops are associated with

cohesin [13], a ringlike protein complex thought to bind
DNA by topologically embracing it [14]. There are two

models for how cohesin might achieve this—as a dimer
acting as a pair of molecular “handcuffs” in which each ring
embraces one DNA duplex [Fig. 1(a)], or as a single ring
that embraces two duplexes [15]. In both cases, the dimer or
ring acts as a sliding bridge or molecular slip link [16,17].
Experiments show that cohesin topologically links to DNA
(with binding mediated by “loader proteins” [13,18]), can
slide along DNA or chromatin diffusively, and remains
bound for τ ∼ 20 min before dissociating (a process
mediated by “unloader proteins”) [18–23].
One recent attempt to address the mechanism underlying

CTCF-mediated looping is the “loop extrusion model”
which argues that cohesin (or other “loop extruding
factors”) can create loops of 100–1000 kbp by actively
traveling in opposite directions along the chromosome
[24–26]. This model is appealing as it naturally explains
the bias in favor of convergent loops, if cohesin gets stuck
when it finds a CTCF binding site pointing towards it (but
passes over CTCF otherwise). However, the model is based
on some assumptions lacking experimental evidence: it
requires (i) that each cohesin can determine and maintain
the correct direction in order to extrude (rather than shrink)
a loop, and (ii) that cohesin must extrude loops at a speed of
v ∼ 5 kbp=min, which is faster than that of RNA polymer-
ase. While cohesin is known to have ATPase activity, this
is not thought to be involved in directional motion; rather,
it drives the gate-opening mechanism needed to link to
DNA [13].
Here, we propose an alternative model for the formation

of CTCF-mediated loops, which does not require unidi-
rectional motion, nor any energetically costly explicit bias
favoring loop extrusion. We start from the observation that
the molecular topology of cohesin—that of a slip link—is
compatible with diffusive sliding along chromatin [19].
From this premise, we formulate a nonequilibrium model
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where the binding and unbinding kinetics of cohesin
violates detailed balance, modeling the fact that both its
loading and unloading onto chromatin requires ATP
[13,27]. We show that within this nonequilibrium context
passive sliding is sufficient to account for both the creation
of loops of hundreds of kbp before dissociation, and the
bias favoring convergent CTCF binding. We further show
that many-body interactions between diffusing slip links
which bind close to a preferred “loading site” lead to the
emergence of an “osmotic ratchet” promoting loop extru-
sion over shrinking, again in the absence of any bias in the
microscopic molecular diffusion.
Single slip links.—We begin by discussing an exactly

solvable 1D model where a slip link consisting of two
cohesin rings in a dimer slides along the chromatin fiber.
We assume that this binds with the cohesin rings at adjacent

positions on the fiber (as in [25]), and that there is a
constant detachment rate koff ¼ τ−1. Data suggest that
cohesin interacts with CTCF in a directional manner
[10,25,28], so we assume that slip links bind to CTCF
sites which face them, and are reflected off those which do
not; further we assume that when the slip link reaches the
two convergent CTCF sites it undergoes a conformational
change decreasing koff . We consider two CTCF proteins
bound to the fiber at a separation l in a convergent
orientation. [The case of a divergent pair is treated in
[29], and as expected leads to no stable looping (Fig. S1
[29]).] For simplicity, we allow the rings forming one
cohesin to diffuse until their separation reaches l, or until
the dimer spontaneously unbinds, and consider both to be
absorbing states. This is a nonequilibrium model as the
binding-unbinding kinetics violate detailed balance, in line
with experimental evidence that ATP is required for
both [13,27].
At time t, the slip link holds together a chromatin loop of

size xðtÞ. In order to take into account the entropic loss
associated with this loop, we include an effective thermo-
dynamic potential VðxÞ (detailed below). The probability
that the cohesin holds a loop of size x at time t, obeys the
following generalized Fokker-Plank equation:

∂pðx;tÞ
∂t ¼−koffpðx;tÞþ

∂
∂x

�
1

γ

dV
dx

pðx;tÞ
�
þD

∂2

∂x2pðx;tÞ;
ð1Þ

where D and γ are the effective diffusion and drag
coefficients describing the relative motion between chro-
matin and cohesin. The fluctuation-dissipation theorem
implies D ¼ kBT=γ. The initial condition for Eq. (1) is
pðx; 0Þ ¼ δðx − σslÞ, where σsl is the size of the slip link.
Boundary conditions are reflecting at x ¼ σsl and, for
simplicity, absorbing at x ¼ l—replacing the latter with
an attractive interaction between CTCF and cohesin does
not affect our results (Fig. S1 [29]).
We consider three possible cases. First, we model “loop

extrusion” as in [24,25,40] by setting D ¼ 0 and
ð1=γÞðdV=dxÞ ¼ −v, with v the extrusion speed. Second,
we consider a “diffusion” model where cohesin diffuses in
the absence of a potential, V ¼ 0. Third, we consider a
cohesin dimer diffusing in a potential VðxÞ ¼ ckBT logðxÞ,
which models the entropic cost of looping via the known
contact probability peqðxÞ ∼ x−c. Here c is a universal
exponent: in 3D, c ¼ 1.5 for random walk loops [41],
c ∼ 2.1 for internal looping within self-avoiding chains
[41,42], and c ¼ 1 for contacts within a “fractal globule”
[11]. We refer to the case with a logarithmic potential as the
“slip link”model, as it most closely resembles the dynamics
of slip links on polymers [4,16,17].
As detailed in [29], we can analytically find the

probability that a cohesin dimer binding at t ¼ 0 will, at
some point, form a CTCF-mediated loop before detaching.

FIG. 1. Nonequilibrium chromosome looping. (a) Schematic of
our model of diffusing slip links. (b) Probability of nonequili-
brium loop formation in exactly solvable 1D models as a function
of loop size l. Curves correspond to models involving (i) ex-
trusion, (ii) diffusion, and (iii) slip links. Parameters are k−1off ¼
20 min and (i) v ¼ 10 kbp=min; (ii), (iii) D ¼ 25 kbp2=s;
(iii) σsl ¼ 1 kbp, and c ¼ 1 [11]. (c) Average loop size for
models involving diffusion and slip links. Parameters are as in
(b), apart from D which is varied. (d) Nonequilibrium looping
probability for a slip link, computed from BD simulations, with
different k−1off ¼ τ. The blue line shows an exponential fit for
k−1off ¼ 25 min. (e) Analysis of ChIA-PET experiments for CTCF
contacts within a Mbp [12] (log-linear plot).
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Denoting this probability by pðlÞ, the three models predict
the following dependence on loop size l [Fig. 1(b)]:

pextrðlÞ ¼ e−koff l=v; pdiffðlÞ ¼
1

coshðαlÞ ;

pslipðlÞ ¼
�

l
σsl

�
n Im−1ðαlÞKmðαlÞ þ ImðαlÞKm−1ðαlÞ
Im−1ðασslÞKmðαlÞ þ ImðαlÞKm−1ðασslÞ

;

ð2Þ
where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

koff=D
p

, n ¼ ð1 − cÞ=2, and m ¼ ð1þ cÞ=2;
I and K denote the modified Bessel functions of the first
and second kind, respectively. Note that we have taken the
σsl → 0 limit for the loop extrusion [pextrðlÞ] and diffusion
[pdiffðlÞ] cases.
For large l, Eqs. (2) predict exponential decay of CTCF-

mediated looping probabilities for all cases [Fig. 1(b)], with
a power law correction for slip links, pslipðlÞ ∼ e−αll−c=2.
This is markedly different from the power laws determining
the looping probability of an equilibrium polymer [16,17].
The decay length is v=koff for the loop extrusion model
[25], and α−1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=koff
p

for the diffusion and slip link
models; these are therefore the typical looping lengths
formed before cohesin detaches. CTCF-mediated loop
lengths in vivo are typically ∼100 kbp [7,10]; taking
τ ¼ 20 min means loop extrusion is viable if
v > 5 kbp=min, whereas the diffusion or slip link models
require D > 10 kbp2=s [Fig. 1(c); see Conclusions and
[29] for a discussion of the likely in vivo value of D].
Our 1D theory does not account for the motion of the

chromatin fiber, or for the coupling between instantaneous
polymer conformation in 3D and slip link diffusivity; to
account for these aspects, we also present results from 3D
Brownian dynamics (BD) simulations [29]. We modeled a
chromatin fiber as a bead-and-spring polymer with bead
diameter σ ¼ 30 nm, compaction C ¼ 100 bp=nm, and
persistence length lp ¼ 4σ [43]; cohesin slip links were
modeled by two rigid rings (each with diameter 2R ∼ 3.5σ,
and thickness σsl ¼ σ, whileD ∼ 5 kbp2=s [29]). Each ring
embraces the fiber, and the two rings are linked via a
semiflexible hinge, favoring a planar handcuff configuration
with the center of the rings a distance 2R apart (Fig. S5 [29]).
Figure 1(d) shows the nonequilibrium looping probability
pslipðlÞ for different values of koff found in these 3D
simulations. The results confirm our 1D model predictions
that large loops can form via diffusive sliding—e.g., a
100 kbp loop forms with probability ∼0.3 if k−1off ¼ τ ¼
25 min (see also [29], Figs. S7, S8, and Movie 1). As in the
1D models, the decay of pslipðlÞ is exponential [Fig. 1(d)].
Hi-C experiments measuring the frequency of contacts

between all genomic loci largely support a power law decay
of contact probability [44]. However, that analysis does not
distinguish between CTCF-mediated loops and other con-
tacts [43–46]. Chromatin interaction analysis by paired-end
tag sequencing (ChIA-PET) experiments [10] are able to
single out contacts where both anchor points are bound to a

protein of interest. Intriguingly, in CTCF ChIA-PET data
[12], fitting to an exponential leads to reasonable decay
lengths (loop size) of ∼500–1000 kbp [Fig. 1(e)], whereas
fitting to a power law yields an effective exponent which is
far from those expected from equilibrium polymer physics
[Fig. S11(a) [29] ].
Multiple slip links and the osmotic ratchet.—So far, we

have considered a single slip link. When multiple slip links
coexist on the same chromatin segment, they may interact
either sterically or entropically. To quantify how this affects
loop formation, we performed simple 1D simulations
capturing the stochastic dynamics of each side (monomer)
of N slip links which interact solely via excluded volume,
and diffuse along a chromatin fiber of size L discretized
into segments of length σsl [Figs. 2(a)–2(c), and [29] ].
Each slip link can exist in an unbound or chromatin-bound
state with binding and unbinding rates kon and koff ,
respectively. When binding, the two slip link monomers
always occupy neighboring sites along the fiber. In [29], we
present a model which also includes a “looping weight”
(Figs. S3 and S4), accounting for the entropy of a loop
network [16,17]. This effective potential has a quantitative
effect but does not modify the qualitative trends; hence, we
report here results from the simpler case without the weight.
We consider two cases: (i) with slip links binding at

random (unoccupied) locations on the fiber, and (ii) with
binding occurring at a preferred “loading site.” Figure 2(a)
shows the time average of the maximal loop size hlmaxi in a
steady state as a function of N for the first case. As the fiber
gets more crowded, the slip links form consecutive loops
[Fig. 2(a), inset, and Fig. S3(c)] competing with each other.
Consequently, hlmaxi decreases steadily with N [Fig. 2(a)].
A strikingly different result is found when slip links

always bind at the same location. This scenario mimics the
experimental finding that linking of cohesin to DNA is
facilitated by a loader protein (e.g., Scc2 or NIPBL), which
has preferential binding sites within the genome [1,18,23].
In this case, we observe that the maximum loop size
increases with N [Fig. 2(b)], favoring loop growth over
shrinking. Therefore, the system now works as a ratchet,
rectifying the diffusion of the two ends of the loop
subtended by a slip link. The typical loop network found
in a steady state is different from the case of random
rebinding, and entails a significant proportion of nested
loops [6 out of 11 in Fig. 2(b), inset, and Fig. S3(d)], which
reinforce each other. Figure 2(c) shows the probability
distribution of sizes for the largest loop and confirms the
dramatic difference between the cases with and without
loading. We also performed BD simulations of a chromatin
fiber interacting with N slip links which can bind and
unbind, with a loading site [29]. These 3D simulations
confirm the ratchet effect, and show that the outer loops can
easily span hundreds of kbp [Fig. 2(d); Fig. S8 [29] ] even
with as few as N ¼ 3 slip links. This ratchet effect may
provide a microscopic basis for the loop extrusion model in
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[24–26], valid under conditions where several cohesins (or
other slip links) are bound to the same chromatin region.
While the simulations discussed thus far were done in

dilute conditions, simulations of slip links moving on
chromatin fibers at physiological concentrations reach
qualitatively similar conclusions (Fig. S9 [29]). The chro-
matin contact patterns arising from 1D or 3D simulations
are also reminiscent of intra-TAD contact maps observed
by Hi-C (Figs. S9, S10 [29]), although in vivo we expect
other mechanisms besides cohesin-mediated looping to
contribute to contact formation [43,44,46].
To understand the emergence of a self-organized ratchet,

we construct a simple theory by analyzing the 1D model
without looping weight (see [29] for more details). The key
factor is the existence of a nonuniform slip link density
ρðxÞ, and hence an osmotic pressure; the associated
gradient creates a force that rectifies the motion of cohesin
rings placed close to the loading site. If volume exclusion

does not significantly affect the density and pressure
profiles (an assumption which holds in our 1D stochastic
simulations, Fig. S2 [47]), we can write down the following
phenomenological equation determining the size of a loop,
l, subtended by a symmetrically progressing slip link
starting from the loader:

dl
dt

¼ −2Dσsl

�∂ρ
∂x

�
x¼l=2

¼ konNoffσsle−αl=2; ð3Þ

where Noff ¼ Nkoff=ðkon þ koffÞ is the average number of
unbound cohesins. The maximal speed of this “osmotic
ratchet” is achieved for loops close to the loading site.
Equation (3) predicts that at a given time, l should grow
logarithmically with N, and our data are indeed fitted well
by the functional form aþ b logN [Fig. 2(b)].
Conclusions.—In summary, we proposed a dynamical

model through which molecular slip links might organize
chromosomal loops. First, we showed that diffusive sliding
of cohesin [18,48,49] naturally explains the experimentally
observed bias favoring convergent over divergent CTCF
loops. Second, the probability of formation of cohesin/
CTCF-mediated loops does not obey a power law, in stark
contrast with the case of polymer loops in thermodynamic
equilibrium. Finally, we found that when multiple slip links
bind to chromatin at a “loading site” rather than randomly, a
ratchet effect arises, which favors the formation of much
larger loops than are possible with single slip links. Each of
these results critically depends on our assumption that the
cohesin binding kinetics violate detailed balance, which is
motivated by the fact that its loading and unloading
requires ATP.
An important consequence of our work is that it predicts

which values of the 1D diffusion coefficient,D0 (in μm2=s)
and chromatin compaction, C (in bp/nm), are needed for
slip links to form CTCF-mediated loops of hundreds of
kbp, as found in mammalian genomes [7]. For a single slip
link, we need D ¼ D0C2 > 10 kbp2=s; for multiple slip
links due to the ratchet effect a substantially smaller D
suffices. The worst-case scenario occurs for the least
compact structure, a 10-nm chromatin fiber with
C ∼ 20 bp=nm: this requires D0 > 0.025 μm2=s. Recent
experiments in Xenopus egg extracts [49] found D0 ¼
0.2525� 0.0031 μm2=s for acetylated cohesin on chroma-
tin [49], comfortably fulfilling the requirement (see [29] for
a more quantitative discussion of these and other experi-
ments). Those experiments were performed on a stretched
fiber, whereas in vivo cohesin dimers are associated with
folded chromatin and need to work in a crowded nucle-
oplasm. Our BD simulations suggest that long enough
loops can still be formed when these aspects are taken into
account. We hope that our work will prompt new studies to
measure diffusion of multiple cohesins on reconstituted
chromatin fibers. Particularly our model shows that an
extrusion mechanism could arise without the previously

FIG. 2. Multiple slip links and the osmotic ratchet. (a),(b)
Results from 1D simulations of diffusing slip links rebinding
either (a) randomly, or (b) at a loading site. Plots show the time
average of the largest loop (for the case with looping weight see
[29], Fig. S4). Parameters are σsl ¼ 1 kbp, L ¼ 1000 kbp,
k−1on ¼ k−1off ¼ 25 min, the diffusion coefficient of a monomer
is D ∼ 33.35 kbp2=s, while N is varied. There are reflecting
boundary conditions at the two ends of the fiber. Typical
configurations for N ¼ 20 are shown as insets, as “looping
diagrams” showing the loop network [29]. The dotted line in
(a),(b) denotes the average loop size with a single slip link; the
solid line in (b) is a fit to aþ b logN (see text). (c) Probability
distribution of the largest loop size for different N with or without
loading (for the case with looping weight see [29], Fig. S4).
(d) Results from 3D BD simulations of multiple slip links with
loading, for L ¼ 3000 kbp, k−1off ¼ 25 min. The plots show the
probability distribution of the size of the largest loop for N ¼ 1
(with kon → ∞), and N ¼ 3 (with kon ¼ 10koff , snapshot shown
as an inset).
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proposed motor activity, and it is important that future
experiments are designed to discriminate between these
models.
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