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The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to
a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the
Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a
“wormhole” tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete
Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D
distribution, giving an example of (d — 2)-dimensional boundary states. This is distinctly different from the
surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy
sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized
plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological
semimetal, such as the TaAs family, Cd;As,, or Na;Bi. This work will be instructive not only for searching
transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases
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Introduction.—The discovery of the quantum Hall effect
opens the door to the field of topological phases of matter
[1]. In a strong magnetic field, the energy spectrum of a 2D
electron gas evolves into Landau levels. The Landau levels
deform at the sample edges and cut through the Fermi
energy, forming 1D edge states protected by topology [2].
Electrons can flow through the edge states in a dissipation-
less manner, giving rise to Hall conductance in units of >/
that defines the quantum Hall effect. The quantum Hall
effect can give transport signatures that distinguish different
electron gases, such as the half-integer Hall conductance of
the 2D massless Dirac fermions in graphene and topological
surface states [1,3—6]. By contrast, in a 3D electron gas, the
extra dimension along the magnetic field direction prevents
the quantization of the Hall conductance. Therefore, the
quantum Hall effect is usually observed in 2D systems.

In this Letter, we show that the quantum Hall effect is
possible in a unique 3D system, specifically, in a topological
semimetal, because of the Fermi arcs. The topological
semimetal is a 3D topological state of matter [7—18], in
which energy bands touch at discrete Weyl nodes
[Fig. 1(a)]. It is equivalent to a 2D topological insulator
formomenta (k, here) between the Weyl nodes, leading to the
topologically protected states located at the surfaces [top and
bottom in Fig. 1(c)] parallel to the Weyl node separation
direction. The protected states form the Fermi arcs on the
Fermi surface [red curves in Figs. 1(a) and 1(b)]. The Fermi
arcs have been seen by angle-resolved photoemission

0031-9007/17/119(13)/136806(7)

136806-1

spectroscopy [14,16,19-30] and can induce novel quantum
oscillations [31,32]. Topological phases of matter usually
come with distinctive transports, making the transport
signature of the Fermi arcs an intriguing topic [33-37].
There are several issues for the Fermi arcs to exhibit the
quantum Hall effect. First, the topological origin requires
that the states of Fermi arcs occupy only a region between
the Weyl nodes [38] [Fig. 1(b)]. At one surface, the Fermi
arcs cannot form a closed Fermi loop needed by Landau
levels and the quantum Hall effect. We find that the Fermi
arcs from opposite surfaces in a topological semimetal slab
[Fig. 1(c)] can complete the needed closed Fermi loop
[Fig. 1(d)]. Electrons can tunnel between the Fermi arcs at
opposite surfaces via the Weyl nodes [Figs. 1(e)-1(g)].
Second, the quantum Hall effect solely from the Fermi arcs
requires the bulk carriers to be depleted by tuning the Fermi
energy to the Weyl nodes [39]. Third, we find that the band
anisotropy in the bulk Weyl fermions is necessary for the
Fermi arcs to form a 2D electron gas. These properties in
the quantum Hall effect can provide transport signatures for
the Fermi arcs. Compared to the novel quantum oscillations
[31,32], the quantum Hall effect of the Fermi arcs con-
tributes a quantum complement to the Fermi-arc-dominant
electronic transports. The Weyl semimetals TaAs family
[27-30,40-43] and the Dirac semimetals Cd;As, and
Na;Bi have extremely high mobilities [44-48] required
by the quantum Hall effect. Low carrier densities [49-51]
and gating [49] have also been achieved. We expect the
quantum Hall effect of the Fermi arcs in slabs of the TaAs
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FIG. 1. (a) The energy dispersions for the Fermi arc (at

y = L/2) and bulk states in a topological Weyl semimetal.
stands for (k,, k,) for the bulk and k, for the arc, respectively.
(b) The Fermi arc at y = L/2 and Er = E,, on the k, — k, plane.
The shadow defines the “constraint” region where the Fermi arcs
can exist. (c) A slab of topological semimetal of thickness L and
width W. (d) The Fermi arcs at E = E,, (solid) and constraints
(shadow) at the y = L/2 (red) and —L/2 (blue) surfaces of the
slab. [(e)—(g)] The wave function distributions at k, = 0 along the
y axis, at the blue (bottom arc, k, < 0), black (Weyl nodes), and
red (top arc, k, > 0) dots in (d). (h) Landau levels of the Fermi
arcs at B =5 T vs the guiding center z,. (i) The wave function
distributions along the y axis for the edge states of the Fermi arcs
marked by the green and orange dots in (h). L = 100 nm,
W = 200 nm, and other parameters can be found in Fig. 2.

family, [110] or [110] Cd;As, [52], and [100] or
[010] NasBi.

Minimal model—We will use a minimal model to
illustrate the physics for the Fermi-arc quantum Hall effect.
To preserve their topological properties, we need to derive
the 2D effective model of the Fermi arcs from a 3D model
of Weyl semimetal [53-55],

H = Dk + Dy (k% + k2) + A(k,0, + kyo,)
+ M(ky, — kK)o, (1)

where (6,,0,,0,) are the Pauli matrices, the wave vector
k = (k.. ky,k;), and Dy, D,, A, M, and k,, are model
parameters. We assume that |M| > |D;|. The energy
dispersion of the model is EX = D k2 + D,(kZ + k2)+
[M? (k% — k?) 4+ A%(k2 + k2)]"/2, with =+ for the conduc-
tion and valence bands, respectively. The model hosts two
Weyl nodes at (0,0,4k,) having energy E, = D,k2
[Fig. 1(a)], and carries all of the topological semimetal
properties [56]. In contrast to the k - 6 model, the Fermi arc
states can be solved analytically from the model [38].
Open Fermi arc at one surface.—First, we show that the
Fermi arc at a single surface of a Weyl semimetal cannot
host the quantum Hall effect. We focus on the y = L/2
surface. By replacing k, with —id, in H and using open-
boundary conditions, we can solve the wave function at
k. =k, =0, and then project H on the wave function to
construct the effective model (see the procedure at
[38,57,58] and Sec. S1 of [59]) for the Fermi arc,

Harc:le%v"i_vkx—i_(DZ_Dl)(k%—’—k?)’ (2)

where v = A\/M? — D3/M. If there is no anisotropic D
terms, the Fermi arc only disperses linearly with k,;
consequently, the Landau levels cannot be defined.
Therefore, the anisotropic D terms are necessary.
Moreover, the electron gas of the Fermi arc is distinct
from usual 2D electron gases because it is confined within a
specific momentum space due to their topological nature
[38]. For this model, the Fermi arc at the y = L/2 surface is
confined in a region defined by the constraint

k2 + k? + 2ak, < k2, (3)

where a = AD, /2M\/M? — D3. This means that the wave
vectors of the Fermi arcs at the y = L /2 surface are only

allowed within a circle of radius /k2 + a” centered at
(k, = —a, k, =0). The Fermi circle of H,, at a given
Fermi energy can only partially overlap with the constraint
in Eq. (3), forming an “open” Fermi surface, as shown by
the red solid curve in Figs. 1(a) and 1(b). Because of the
open Fermi surface, electrons cannot undergo complete
cyclotron motion in a perpendicular magnetic field. Thus,
the 2D electron gas of Fermi arc at a single surface cannot
form well-defined Landau levels required by the quantum
Hall effect.

Fermi arc loop via “wormhole” tunneling.—In contrast,
the Fermi arcs at two opposite surfaces of a slab of Weyl
semimetal, with the assistance of the Weyl nodes, can form
a closed Fermi loop to support the quantum Hall effect. For
a Weyl semimetal slab of thickness L, we consider two
opposite surfaces at y = +L/2 [Fig. 1(c)]. Similar to
Egs. (2) and (3), the model and constraint at the y =
—L/2 surface are found as Hl, = Dk2 — vk, + (D, —
D,)(k2 + k%) and K2+ k2 —2ak, < k2, respectively.
Figure 1(d) shows the Fermi arcs at Ep = E,, and
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constraints at the two surfaces. The Fermi arcs at opposite
surfaces shift along opposite directions on the k, axis. The
two open Fermi arcs [red and blue curves in Fig. 1(d)] can
form a Fermi loop well inside the overlapping constraint
regions; thus, all states on this loop are allowed. We
numerically calculate the energy spectrum for this slab
by using the basis ¢,(y) = \/2/Lsin[nz(y/L + 1/2)]
(Sec. S2 of [59]). Figure 2(a) verifies the above picture
for the Fermi loop formation. The energy band for the
Fermi loop is marked as “I” (arc I). There is another band
(marked as “II’), which appears below arc I at k, =
+0.1 nm™" but buried in the bulk valence bands.
Moreover, the wave function on the Fermi loop can evolve
from located at one surface [Figs. 1(e) and 1(g)] to spread
out in the y direction [Fig. 1(f)] when moving from the
Fermi arcs to the Weyl nodes. Therefore, the Weyl nodes
act like “wormholes” that connect the top and bottom
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FIG. 2. (a) In a topological semimetal slab, the numerically

calculated energy spectrum (pink) for the bulk states and Fermi
arcs at k, = 0 (left) and k, = £0.1 nm™! (right). The blue curves
are the Fermi arc bands plotted using H,,. and H},.. (b) The sheet
Hall conductivity when the Fermi energy Ey crosses the bulk
states for I' - 0. T" is the disorder-induced level broadening.
Recent experiments show that gating can tune carriers from n- to
p-type in 100-nm-thick devices of topological semimetal [49].
(c) The sheet Hall conductivity of; at Ep = E,,, where the Fermi
energy crosses only arc I. The right inset shows the analytic Hall
conductance o§® in Eq. (5). In the presence of a residual detuning
from the Weyl nodes, the bulk states also contribute to o7;. Unlike
that from the Fermi arcs, the contribution from the bulk states
may change with the slab thickness. The left inset shows the
width of the Hall plateaus in the clean limit as a function of D,
for different k,,. The dots and lines are the numerical and analytic
results, respectively. The parameters are M =35 eV nm?,
A=05eVnm, and D,=3eVnm?>, D;=2eVnm?
k, =03 nm~!, and L = 100 nm.

surfaces, and an electron can complete the cyclotron
motion. Because the Weyl nodes are singularities in both
energy and momentum, the wormhole tunneling can be
infinite in both time and space, according to the uncertainty
principle. In realistic materials, the tunneling distance is
limited by the mean free path, which can be comparable
to or longer than 100 nm in high-mobility topological
semimetals [40—48], even up to 1 um [32], so the thickness
in the calculation is chosen to be 100 nm. The loop formed
by the Fermi arcs at opposite surfaces via the Weyl nodes
can support a 3D quantum Hall effect. The wormhole effect
has been addressed in different situations in topological
insulators [60].

The Hall response.—Now we demonstrate that arc I of
the Weyl semimetal slab can host the quantum Hall effect.
The Hall conductivity can be calculated from the Kubo
formula (Sec. S3 of [59]),

e’h (Ps|v [P ) (Py|v.|Ps)[f(Es) — f(Es)]
(Es — Eg)(Es — Eg + 1) ‘

Oy =~
Vet S5

(4)

Here |¥s) is the eigenstate of energy Es for H in a
y-direction magnetic field and with open boundaries at
y = =L/2, v, and v, are the velocity operators, f(x) is the
Fermi distribution, V. is the volume of the slab or the area
of the surfaces that host the Fermi arcs. oy has a dimension
of €2 /hin 2D and of e?/h over length in 3D. The sheet Hall
conductivity for the slab can be defined as o3; = oyL. We
use the basis |¢,(z)) ® |@,(y)) to find the eigenenergies
for a slab in the y-direction magnetic field, where ¢, are the
harmonic oscillator eigenfunctions. Figure 2(b) shows the
sheet Hall conductivity for the topological semimetal slab
at Fermi energies far away from the Weyl nodes. of; follows
the usual 1/B dependence. As the Fermi energy is shifted
towards the Weyl nodes, the slope becomes smaller,
indicating decreasing carrier density. Also, quantized pla-
teaus of o}, start to emerge as the Fermi energy approaches
the Weyl nodes. When the Fermi energy crosses only arc [
[Fig. 2(c)], of; shows well-formed quantized plateaus in
units of e?/h, indicating the quantum Hall effect of the
Fermi arcs. Here disorder is included in the Kubo formula
via the level broadening I'. This treatment is capable of
giving the quantization in graphene [61], which is massless
in 2D. Because of the relation with the Chern number [2],
the quantum Hall effect can be theoretically studied in the
absence of disorder, as those in topological insulators
[62-65]. To verify the numerical result in Fig. 2(c), we
also calculate analytically the quantum Hall conductance
from arc I (Sec. S4 of [59]), by modeling arc I as an
anisotropic parabolic band H,. ~ D k2, + h?k2/2m, +
h’k2/2m., with m, and m. being the effective masses.
We can find the quantum Hall conductance of arc I in the
clean limit I' = 0 [66,67]
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where |...| stands for rounding down, R = D, — D,
and the area of arc I in momentum space is
Sy = 2k%(1 + v?/4R*K2) arctan(2|R|k,,/|v]) — |v|k,/|R|.
Figure 2(c) shows a good agreement between the analytic
and numerical results on the Hall conductance and width of
the plateaus.

Where are the edge states ofthe Fermiarcs ?.—Figures 1(h)
and 1(i) show that the edge states of the Fermi arcs have a
unique 3D spatial distribution. Figure 1(h) shows
the energies of the Landau levels in the y-direction field.
The energies deform into edge states near zo = £100 nm.
The green dot in Fig. 1(h) and the green curve in Fig. 1(i)
show that the edge state near z; = 100 nm mainly distrib-
utes near the top surface at y = 50 nm. By contrast, the
edge state near z; = —100 nm mainly distributes near the
bottom surface (orange dot and curve). This unique 3D
distribution of the edge states of the Fermi arcs can be
probed by a combined measurement of in-plane transport
and STM. Different from topological insulators [5,6], the
Fermi-arc quantum Hall effect requires the collaboration of
the two surfaces. Note that a 100-nm slab is still a 3D
object. Therefore, the quantum Hall effect at Weyl nodes
Er = E,, and the Fermi energy dependence can serve as
transport signatures of the Fermi arcs. The above picture for
the Fermi-arc quantum Hall effect can work for Weyl
semimetals [27-30,39-43].

Topological Dirac semimetals.—Because of time-
reversal symmetry, a single surface of the Dirac semimetal,
such as Cd;As, and NazBi, can support a complete
Fermi loop required by the quantum Hall effect. The
same-surface Fermi arc loop is not that robust and may
get deformed [68], and thus may show different character-
istics (such as positions and widths of the Hall plateaus)
compared to the two-surface Fermi arc loop. The spectrum
and Fermi-arc Hall effect in Dirac semimetals can be
studied (Secs. S5 and S6 of [59]) by using the
Hamiltonian [14,16,69]

Mk) Ak, 0 0
e | A M@)o 0
=ab)t) 0 M@k —Ak
0 0 —Ak, -M(k)
.0
oot | ©

where g, and g, are the g factors for the s and p bands [69],
k:l: = kx + iky, Eo(k) = CO + Clkg + Cz(k)zc + kg), and
M(k) = Mo+ M k? + M,(k% + k2). The x, y, and z axes
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FIG. 3. (a) The crystallographic directions and coordinates

system in the model of Dirac semimetal Eq. (6). Slabs grown
along the [112] and [110] directions corresponds to (a,6) =
(=z/4,tan"' \/2) and (—z/4,0), respectively. (b) y' is the slab
growth direction. The Hall conductance is defined in the x' —
7 plane. The magnetic field can be rotated from the y’ to the
x' direction by the angle &. [(c),(d),(f)] For a slab of 100 nm,
the energy spectrum at k, = 0.01 nm~! and the wave function
distribution along the y’ direction for the states marked by the
red points. (e) The sheet Hall conductivity at the Dirac node
E, = Cy— CiMy/M, for the Cd;As, [110] slab at different &.
(g) The same as (e) but for the [010] Na3Bi slab. The para-
meters for Cd;As, are Cy = —0.0145 eV, C; = 10.59 eV A2,
C,=115eVA% M, =00205¢eV, M, =-18.77 VA2
M, =-135eVA%2 A=0889eVA [70], g, =18.6, and
gy =2 [69]. The parameters for NazBi are C,=
—-0.06382 eV, C; =8.7536eVA?, C, = —8.4008 eV A%, M,=
0.08686eV, M,;=-10.6424eVA>, M, = —10.361 eV A2,
A =124598 eVA [70] g, =20, and g, =20 [48]. T =1K
in panels (e) and (g).
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in the Hamiltonian are defined along the [100], [010], and
[001] crystallographic directions, respectively. The samples
of Cd;As, are usually cleaved or grown along [112] or
[110] directions, which can be defined as the new y’ axis for
convenience, as shown in Fig. 3(a). For the [112] slab, the
parameters [70] yield that the Fermi arc bands are close to
the bulk subbands [Fig. 3(c)], implying that the quantum
Hall effect may exhibit a fourfold degeneracy. For the [110]
slab, the quantum Hall effect may come from pure Fermi
arc states [Fig. 3(d)]. Figure 3(e) shows that for the [110]
Cd;As, slab the odd plateaus are wider than the even
plateaus, because the g factor is large. This feature is robust
when rotating the magnetic field. The Na;Bi samples
cleaved along the [010] direction [22] can be used to
probe the quantum Hall effect of the Fermi arcs [Figs. 3(f)
and 3(g)]. The C and M terms in Eq. (6) secure the 2D
Fermi arc on the (010) surface.
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