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Some time-reversal symmetric topological orders are anomalous in that they cannot be realized in strictly
two-dimensional systems; instead, they can only be realized on the surface of three-dimensional symmetry-
protected topological phases. We propose two quantities, which we call anomaly indicators, that can detect
if a time-reversal symmetric topological order is anomalous in this sense. Both anomaly indicators are
expressed in terms of the quantum dimensions, topological spins, and time-reversal properties of the
anyons in the given topological order. The first indicator, η2, applies to bosonic systems while the second
indicator, ηf, applies to fermionic systems in the DIII class. We conjecture that η2, together with a
previously known indicator η1, can detect the two known Z2 anomalies in the bosonic case, while ηf can
detect the Z16 anomaly in the fermionic case.
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A useful way to characterize two-dimensional (2D)
gapped quantum many-body systems is in terms of the
properties of their anyon excitations. For systems with
global symmetries, one can study both topological and
symmetry properties of anyons. These properties are said to
describe the symmetry-enriched topological (SET) order in
the many-body system [1–6].
An interesting aspect of SET orders is that some of them

cannot be realized in strictly 2D systems [7]. Instead, they
can only be realized on the surfaces of 3D symmetry-
protected topological (SPT) phases—generalizations of the
famous topological insulators [8–10]. SET orders of this
kind are said to be anomalous [11]. More quantitatively,
one can define an anomaly associated with each SETwhich
takes values in the Abelian group that classifies the
corresponding 3D SPT phases (see examples below).
This anomaly carries the information of which 3D SPT
phase can host the SET on its surface [13].
Given that the anomaly associated with each SET tells us

which types of physical systems can realize it, it is desirable
to have general formulas for determining these anomalies.
Such formulas have been found for large classes of SETs
with unitary symmetries [5,15–19]. However, they are
generally lacking for SETs with antiunitary symmetries
like time reversal invariance; in the latter case, anomalies
have mostly been determined only for specific examples of
SETs, and even then their calculation is difficult and
involves finding models that realize the SET on the surface
of a known SPT phase [20–24].
In this work, we propose general anomaly formulas for

the simplest class of time-reversal symmetric SETs—
namely, those whose only symmetry is time-reversal
invariance. We consider both bosonic and fermionic sys-
tems. In the bosonic case, it is known that there are four
time-reversal symmetric 3D SPT phases (including the

trivial phase) which are classified by the group Z2 × Z2

[7,10,25,26]. Hence, each time-reversal symmetric SET is
associated with a Z2 × Z2-valued anomaly. Equivalently,
each SET is associated with two types of anomalies, each
taking values in Z2 ¼ f�1g. One of these two time-
reversal anomalies (T anomalies) has been understood
previously and is known to be given by the formula

η1 ¼
1

D

X
a∈C

d2aeiθa ; ð1Þ

where C denotes the set of anyons in the SET, θa and da are
the “topological spin” and “quantum dimension” of the
anyon a, and D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
ad

2
a

p
is the “total quantum dimen-

sion” (see Ref. [2] for definitions). As a Z2 anomaly
indicator, η1 has two properties: (i) it only takes the values
�1 for any time-reversal symmetric SET and (ii) if
η1 ¼ −1, the SET is anomalous [27].
The indicator η1 is very useful but unfortunately no

analogous quantities have been found for other types of T
anomalies. In this work, we propose two such anomaly
indicators: (i) η2, which detects the second type of Z2 T
anomaly in bosonic systems, and (ii) ηf, which detects the
Z16 T anomaly in fermion systems with T 2 ¼ −1. While
we are not able to prove that η2 and ηf are anomaly
indicators in the same sense as η1, we will provide evidence
to this effect.
Second anomaly indicator for bosonic systems.—We

propose that the second Z2 T anomaly for bosonic
topological orders can be detected by the following
indicator:

η2 ¼
1

D

X
a∈C

daT 2
aeiθa : ð2Þ
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Like η1, we conjecture that η2 can only take the values �1,
and if η2 ¼ −1, the SET is anomalous.
In Eq. (2), we have introduced a new quantity, T 2

a.
Defining it requires two steps. First, recall that the time
reversal operator T can permute different species of any-
ons. We denote this permutation by a → T ðaÞ. Next,
consider the subset of anyons satisfying T ðaÞ ¼ a, i.e.,
the anyons that are invariant under the T permutation.
Invariant anyons can be divided into two classes: those that
carry a twofold time-reversal protected Kramers degen-
eracy, similar to that of a spin-1=2 electron, and those that
do not carry such a degeneracy (for a precise definition, see
Ref. [28]). We will say that an invariant anyon a is a
Kramers doublet if it belongs to the first class and a
Kramers singlet otherwise. With this terminology, we
define the quantity T 2

a as follows:

T 2
a ¼

8>><
>>:

1; if T ðaÞ ¼ a; and Kramers singlet

−1; if T ðaÞ ¼ a; and Kramers doublet

0; if T ðaÞ ≠ a:

ð3Þ

It is worth mentioning that there are physical constraints
on the T permutation and T 2 assignments which hold for
all SETs whether or not they are anomalous. Here, we list
several constraints that will be useful in our later discus-
sion. One example is that the topological spins must satisfy
θT ðaÞ ¼ −θa since T is antiunitary. Accordingly, all invari-
ant anyons must have θa ¼ 0 or π. Another constraint is
that T cannot permute the trivial anyon 1, i.e., T ð1Þ ¼ 1. In
addition, the trivial anyon must be a Kramers singlet, that
is, T 2

1 ¼ 1. Likewise, permuting an anyon twice should be
trivial, so we have T ½T ðaÞ� ¼ a. Lastly, in the case of
Abelian topological orders, both the T permutation and T 2

assignments must respect fusion rules in the sense that

T ðaÞ × T ðbÞ ¼ T ða × bÞ; T 2
aT 2

b ¼ T 2
a×b; ð4Þ

where “×” stands for the fusion product, and the second
equation holds only for invariant anyons. Note that the
above list is not exhaustive; for a more general discussion
of constraints, see Ref. [5].
Example.—As an example, let us evaluate η2 for the well-

known toric-code topological order [29]: C ¼ f1; e; m; ϵg.
Here, 1 is the trivial anyon, e and m are bosons, and ϵ is a
fermion. All the anyons are Abelian, i.e., da ¼ 1 for every
a ∈ C. Accordingly, the total quantum dimension isD ¼ 2.
Consider the case that T does not permute anyons. Then,
there are four possible T 2 assignments: T 2

e ¼ γe and
T 2

m ¼ γm, with γe, γm ¼ �1, respectively. The trivial
anyon must have T 2

1 ¼ 1, and the fermion ϵ must
have T 2

ϵ ¼ γeγm. The latter follows from the fusion rule
e ×m ¼ ϵ and the constraint (4). Inserting the above
information into Eq. (2), we obtain

η2 ¼
1

2
ð1þ γe þ γm − γeγmÞ: ð5Þ

We observe that η2 ¼ −1 if γe ¼ γm ¼ −1, while η2 ¼ 1
otherwise. This agrees with expectations [26]: the first case
corresponds to the so-called “eTmT” SET, which is
believed to be anomalous, while the other three cases
are known to be nonanomalous, i.e. realizable in strictly 2D
systems.
Evidence.—We now discuss the evidence for our con-

jecture about η2.
(i) We have checked that η2 ¼ 1 for three large classes of

strictly 2D systems: (a) Kitaev’s exactly soluble quantum
double models with arbitrary finite group G and with T
acting like complex conjugation [29]; (b) double-layer
topological orders B × B̄, where B is an arbitrary bosonic
topological order and B̄ is the time reversal partner of B,
and the two layers are exchanged under T permutation;
and (c) Abelian topological orders described by K-matrix
theory, discussed in Ref. [28]. We discuss details of
(a) and (b) in the Supplemental Material [30], and
(c) can be analyzed straightforwardly using the formula (6)
given below.
(ii) We have checked that η2 ¼ −1 for several systems

that are believed to be anomalous. Examples that we
considered include (a) the eTmT state discussed above,
(b) the ðT-PfaffianÞ− state, and (c) four copies of the
semion-fermion theory. While the latter two examples are
fermionic systems—in fact, they correspond to SETs that
live at the surface of 3D topological superconductors
[34,35]—they have bosonic counterparts that can be con-
structed by gauging fermion parity symmetry. Our calcu-
lation is for these bosonic counterparts. We present this
calculation in the case of the ðT-PfaffianÞ− state in the
Supplemental Material [30]; the example (c) can be treated
in a similar fashion.
(iii) We have checked that η2 is multiplicative under

stacking of topological orders. To see this, consider two
bosonic topological orders C and C0, with total quantum
dimensions D and D0, respectively. In the stacked system
C ⊗ C0, anyons are labeled by ða; a0Þwith a ∈ C anda0 ∈ C0.
One can see that dða;a0Þ ¼ dada0 , θða;a0Þ ¼ θa þ θa0 , and the
total quantum dimension of C ⊗ C0 is DD0. Also, ða; a0Þ is
invariant under the T permutation if and only if both a and a0

are invariant, and T 2
ða;a0Þ ¼ T 2

aT 2
a0 . Putting this all together it

follows that η2 (aswell as η1) ismultiplicative under stacking.
To see why this result is consistent with expectations, recall
that 3D bosonic SPT phases with time reversal symmetry
form a Z2 × Z2 group under stacking. Therefore, we expect
that the indicators ðη1; η2Þ should also form aZ2 × Z2 group
under stacking. In particular, η1, η2 should be multiplicative
under stacking, as we just verified.
(iv) In the case of Abelian topological orders, we have

checked that η2 does not change under a large class of
topological phase transitions, namely, those arising from
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anyon condensation [36] (see Supplemental Material [30]).
To understand why this property supports our conjecture,
note that anomalies can be thought of as properties of 3D
bulk phases whose surfaces support anomalous SETs. On
the other hand, topological phase transitions can be thought
of as occurring on the surface. Since surface phase
transitions cannot change bulk properties, anomaly indica-
tors must be invariant under such transitions.
Alternative formula for η1η2.—In order to describe some

additional evidence for our conjecture, we now discuss an
alternative formula for the product indicator η1η2. This
formula is not as general as (1) and (2) and only applies to
the case of Abelian topological orders. It states that η1η2
can be computed as [37]

η1η2 ¼ eiθa ; ð6Þ

where a is any anyon that obeys

eiθa;b ¼ T 2
b for all b ∈ I : ð7Þ

Here, I denotes the set of anyons that are invariant under
the T permutation and θa;b denotes the mutual statistics
between a and b.
Before we derive Eq. (6), let us discuss its implications.

First, we can use it to show that η2 can only take the values
þ1 or −1: to see this, note that Eq. (6) implies that η2 has
unit modulus. The claim then follows from the observation
that η2 is real.
Another interesting aspect of the formula (6) is that if we

restrict to the case where T does not permute any anyons,
then Eq. (6) agrees with the more specialized time reversal
anomaly formula conjectured in Ref. [15].
We now turn to the justification of Eq. (6). We need to

establish three points: (i) there always exists at least one
anyon a satisfying Eq. (7); (ii) if there exists multiple a’s
satisfying Eq. (7), then they all share the same topological
spin; and (iii) the expression for η1η2 in Eq. (6) agrees
with Eqs. (1)–(2). We prove the first two points in the
Supplemental Material [30]. Here we will focus on the last
point. To this end, we multiply Eqs. (1) and (2) together and
rewrite the resulting expression:

η1η2 ¼
1

D2

X
c

d2ceiθc
X
b

dbT 2
be

−iθb

¼ 1

D2

X
abc

eiθc−iθbNa
bcdadcT

2
b

¼ 1

D

X
a

nadaeiθa ; na ¼
X
b

sabT 2
b: ð8Þ

Here, the first equality follows from the fact that η2 is real;
the second equality follows from dbdc ¼

P
aN

a
bcda; the

third equality follows from the identity Na
bc ¼ Nā

b̄ c̄
¼ Nc

ab̄

together with the definition of the topological S matrix
[2]: sab ¼ ð1=DÞPcN

c
ab̄
eiθc−iθa−iθbdc.

So far, our computation of η1η2 is completely general.
If we specialize now to the Abelian case, then
sab ¼ e−iθa;b=D. Using the fact that both fT 2

bgb∈I and
feiθa;bgb∈I define one-dimensional representations of the
subgroup I , we find that na ¼ jI j=D if a is a solution to
Eq. (7) and na ¼ 0 otherwise. Next, substituting na into
Eq. (8) and using property (ii) listed above, we deduce that
η1η2 ¼ NjI jeiθa=D2 where a is any solution to Eq. (7) and
N is the number of such solutions. At the same time, it is
not hard to show that N ¼ D2=jI j. Equation (6) follows
immediately.
Anomaly indicator for fermionic systems.—We now

consider time-reversal symmetric SETs in interacting
fermionic systems with T 2 ¼ −1 (i.e., DIII class). The T
anomaly for these SETs takes values in Z16, corresponding
to the Z16 classification of 3D topological superconductors
of DIII class [34,35,38,39]. We propose that this Z16 T
anomaly is detected by the following indicator:

ηf ¼ 1ffiffiffi
2

p
D

X
a∈Cf

da ~T
2
aeiθa : ð9Þ

We conjecture that ηf can take 16 different values, eiπν=8

with ν ¼ 0; 1;…; 15, and that the SET is anomalous
if ηf ≠ 1.
Let us explain the expression (9). First of all, an essential

difference between fermionic and bosonic topological
orders is the existence of a local fermion f in fermionic
topological orders, which has trivial mutual statistics with
all anyons and satisfies the fusion rule f × f ¼ 1. We use
Cf to denote the set of all anyons, including f. Anyons in Cf
always come in pairs, fa; a × fg where a and a × f have
topological spins that differ by π.
In Eq. (9), we have introduced a new quantity ~T 2

a. To
define it, we first introduce a related quantity:

T 2
a ¼

8>>><
>>>:

1; if T ðaÞ ¼ a; and Kramers singlet

−1; if T ðaÞ ¼ a; and Kramers doublet

�i; if T ðaÞ ¼ a × f

0; otherwise:

ð10Þ

(We will explain how to determine the signs in the �i’s
below). With this definition, ~T 2

a is given by

~T 2
a ¼

�
−iT 2

a; if T ðaÞ ¼ a × f

T 2
a; otherwise:

ð11Þ

Here, the minus sign in the −i in Eq. (11) is simply a matter
of convention. In this convention, the surface of a DIII-class
topological superconductor with index ν carries an anomaly
ηf ¼ eiνπ=8. If instead we used þi in Eq. (11), the indicator
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defined through Eq. (9) would be the complex conjugate of
ηf in the current convention.
We now explain how the �i’s in Eq. (10) are assigned.

This is subtle because when T ðaÞ ¼ a × f, time reversal
symmetry guarantees that a and a × f are degenerate in
energy. Thus, a and a × f always form a doublet.
Nevertheless, previous work has shown that the anyons
obeying T ðaÞ ¼ a × f can be divided into two classes
which can be assigned the values T 2

a ¼ i and T 2
a ¼ −i,

respectively [34,35]. Unlike Kramers doublets or singlets,
the physical distinction between anyons with T 2

a ¼ �i is
subtle, and the assignments depend on a sign convention;
however, once a convention has been fixed, the T 2 assign-
ments are unambiguous [35].
As in the bosonic case, the T permutation and T 2

assignments must satisfy certain constraints. In particular,
the relation θT ðaÞ ¼ −θa implies that the invariant anyons
must have topological spin θa ¼ 0 or π while the anyons
with T ðaÞ ¼ a × f must have θa ¼ �π=2. Also, the trivial
anyon 1 and the local fermion f must be invariant under the
T permutation, and must have T 2

1 ¼ 1 and T 2
f ¼ −1.

Lastly, in the case of Abelian topological orders, there
are constraints similar to Eq. (4). However, instead of T 2

a, it
is ~T 2

a that satisfies the relation ~T 2
a
~T 2
b ¼ ~T 2

a×b, for all
nonzero ~T 2

a’s [34,35].
Examples.—Let us evaluate ηf for two examples. Our

first example is the so-called semion-fermion (SF) topo-
logical order. This system contains four Abelian anyons
f1; f; s; s̄g, where s is a semion with θs ¼ π=2, and s̄ ¼
s × f is an antisemion with θs̄ ¼ −π=2. The T permutation
takes T ðsÞ ¼ s̄ and T ðs̄Þ ¼ s. As for the T 2 assignments,
we have T 2

f ¼ −1, and T 2
1 ¼ 1 while there are two

possibilities for T 2
s and T 2

s̄ , namely, T 2
s ¼ −T 2

s̄ ¼ iσ, with
σ ¼ �1. These two possibilities correspond to two types of
semion-fermion topological orders known as SFþ and SF−.
Inserting this information into Eq. (9) and using the
definition (11) gives

ηfjSFσ ¼ eiσπ=4: ð12Þ

This agrees with previous work which has argued that the
SFþ and SF− topological orders are anomalous and live on
the surfaces of ν ¼ 2 and ν ¼ 14 topological supercon-
ductors, respectively [34,35].
Our second example is the SOð3Þ6 topological order

[34]. This theory also contains four anyons f1; f; s; s̄g,
with θs ¼ π=2 and θs̄ ¼ −π=2. The anyons s and s̄ are non-
Abelian with ds ¼ ds̄ ¼ 1þ ffiffiffi

2
p

. The T permutation is
the same as in the semion-fermion topological order,
and like that case there are two variants of SOð3Þ6 with
T 2

s ¼ −T 2
s̄ ¼ �i. We will refer to these two possibilities as

SOð3Þ6;þ and SOð3Þ6;−. Substituting this data into Eq. (9),
we obtain

ηfjSOð3Þ6;σ ¼ eiσ3π=8; ð13Þ

where σ ¼ �1. Previous work has argued that the SOð3Þ6;�
topological orders are anomalous and live on the surfaces of
topological superconductors with odd index ν, but the
values of ν have not been determined [34]. Our conjecture
reveals these values: it implies that the SOð3Þ6;þ topologi-
cal order lives on the surface of a ν ¼ 3 topological
superconductor, while SOð3Þ6;− lives on the surface of a
ν ¼ 13 topological superconductor.
Evidence.—We now turn to the evidence for our con-

jecture about ηf.
(i) We have checked that ηf ¼ 1 for three large classes of

strictly 2D fermionic topological orders. The first two
classes are obtained by taking the 2D bosonic systems that
we discussed earlier—namely, (a) Kitaev’s quantum double
models and (b) double layer bosonic topological orders of
the form B × B̄—and stacking them with a fermionic
atomic insulator. The third class consists of (c) all fermionic
Abelian topological orders described by K-matrix theory
[28]. Actually, the fact that ηf ¼ 1 for classes (a) and
(b) follows immediately from our previous result that
η2 ¼ 1 for the corresponding bosonic systems, since it is
easy to show that ηf ¼ η2 for any fermionic system
obtained by stacking a bosonic system with an atomic
insulator. As for class (c), these systems can be analyzed via
an alternative formula for ηf, similar to Eq. (6). This
alternative formula is discussed in the Supplemental
Material [30].
(ii) We have checked that ηf ≠ 1 for several systems that

are believed to be anomalous, including the ðT-PfaffianÞ−
state,N copies of the semion-fermion state (N∉8Z), andN0
copies of the SOð3Þ6 state (N0∉16Z) [21–24,34,35]. On the
other hand, we have checked that ηf ¼ 1 for the
Moore-Read ×Uð1Þ−2 state, T96 state, and ðT-PfaffianÞþ
state from Refs. [21–24,34,35]. This agrees with expect-
ations since the latter topological orders are believed to be
realizable in strictly 2D.
(iii) We have checked that ηf is multiplicative under

stacking of topological orders.
(iv) For the case of Abelian topological orders, we have

checked that ηf does not change under any topological
phase transition arising from anyon condensation (see
Supplemental Material [30]).
Discussion.—To sum up, we propose two quantities, η2

(2) and ηf (9), for detecting anomalies in time-reversal
symmetric bosonic SETs and DIII-class fermionic SETs,
respectively. Our proposal remains a conjecture. One
possible approach to prove our conjecture would be to
construct, for each SET, a corresponding 3þ 1D topologi-
cal field theory that supports the SET on its 2þ 1D
boundary. If the SET is not anomalous then the partition
function of this 3þ 1D theory should equal 1 for every
closed spacetime manifold. Thus, if one could show that the
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partition function on some (nonorientable) closed manifold
is equal to η2 or ηf, then our conjecture would follow
[14,40]. Another possible approach would be to investigate
η2 and ηf in the context of 1þ 1D conformal field theory
(CFT). Indeed, the relation η1 ¼ ei2πc−=8, which underlies
the η1 anomaly, was first proven in CFT [2,41]. Hence, it
seems plausible that relations analogous to η2 ¼ 1 or
ηf ¼ 1 can also be derived in the context of time-reversal
symmetric CFT.
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