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Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for
Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid
turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made
possible by measuring extremely long time series of up to 1010 samples of the turbulent fluctuating
velocity, which corresponds to Oð107Þ integral length scales. The measurements were conducted in a well-
controlled environment at a wide range of high Reynolds numbers from Rλ ¼ 110 up to Rλ ¼ 1600, using
both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton
University. An implication of the observed oscillations is that dissipation influences the inertial-range
statistics of turbulent flows at scales significantly larger than predicted by current models and theories.
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One of the distinguishing features of turbulent flows is the
deviation of its statistics from Gaussian and the frequent
occurrence of extreme events. Despite decades of research,
an exact prediction or description of the statistics of these
extreme events based upon the governing Navier-Stokes
equations [1,2] is still absent. The rate at which extreme
events, such as strong wind gusts in natural turbulent flows,
occur are captured in the tails of the probability density
function of the longitudinal velocity increment. The
moments of this statistical object are the longitudinal
structure functions of nth order Sn¼h½uðxÞ−uðxþrÞ�ni.
Here, uðxÞ is the longitudinal velocity component aligned
with the separation r, and x is the position. One of the few
exact results that can be derived from the Navier-Stokes
equations under the assumptions of stationarity, homo-
geneity, and isotropy concerns the third-order longitudinal
structure function,

S3ðrÞ − 6ν
d
dr

S2ðrÞ ¼ −
4

5
hϵirþ qðrÞ: ð1Þ

This relation was derived originally by Kármán and
Howarth [3] for correlation functions and reformulated by
Kolmogorov [4] in terms of structure functions. Here, qðrÞ
is a source term containing the information about energy
injection, ν the kinematic viscosity, and hεi the mean
energy dissipation rate. In the limit of infinite Reynolds
numbers, ν → 0, the second term on the left-hand side of
the equation vanishes as long as the derivative remains

finite. Following the classical cascade picture by
Richardson [5] and the original arguments by
Kolmogorov [4], there is an intermediate range of scales
where neither the energy injection at the large scales nor the
energy dissipation at small scales influences the statistics of
the flow. In the inertial range, one obtains Kolmogorov’s
four-fifths law [6] predicting a power-law form for the
third-order structure function:

S3ðrÞ ¼ −
4

5
hϵir: ð2Þ

The variation of the third-order structure function with
the Reynolds number can be seen in Fig. 1. With the

FIG. 1. Third-order structure functions measured in the Vari-
able Density Turbulence Tunnel. Here, u0 is the fluctuating
velocity and L the integral length scale. The straight black line
is equal to r=L, the scaling predicted by Eq. (2).

PRL 119, 134502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

29 SEPTEMBER 2017

0031-9007=17=119(13)=134502(5) 134502-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.134502
https://doi.org/10.1103/PhysRevLett.119.134502
https://doi.org/10.1103/PhysRevLett.119.134502
https://doi.org/10.1103/PhysRevLett.119.134502


Reynolds number approaching higher values, an inertial
range emerges, and the third-order structure function
appears to fulfill Kolmogorov’s four-fifths law.
Further assuming that the turbulent flow is self-similar

[7], one can generalize the result to structure functions of
arbitrary orders n, with unknown constants Cn:

SnðrÞ ¼ CnðεrÞn=3: ð3Þ
In this framework, the scaling exponents of the structure

functions ζn ¼ n=3 are simply a linear function of the
order. For real turbulent flows, the assumption of self-
similarity does not hold, and numerous refined models have
been proposed to describe structure functions in the inertial
range [8–18]. All of these models have in common
oscillation-free power-law scaling of the structure functions
in the inertial range, with varying predictions for the scaling
exponents as a nonlinear function of the order. Assuming
the validity of these predictions, one should be able to
extract scaling exponents from the data by computing
logarithmic derivatives d logðSnÞ=d logðrÞ ¼ ζn. Power-
law behavior here would correspond to a horizontal line
in a graph of d logSn=d log r against r. All deviations from
this line are connected to deviations from power-law
behavior (e.g., [19]). Such a graph for S4 of our data is
shown in Fig. 2. Despite the large Reynolds numbers,
however, there seems to only a slow approach to true
scaling.
This lack of observable scaling is a common feature in

experimental turbulent flows and led to an extraction
method developed by Benzi et al. [20] called extended
self-similarity (ESS). Rather than scaling with respect to
the separation r, it is proposed that structure functions scale
with respect to each other, namely, Sn ∝ Sζm;n

m with the
relative scaling exponents ζm;n. Note that different defi-
nitions of Sm can influence the resulting scaling exponents

[21]. We use the method to reveal the detailed shape of the
structure functions.
We performed the experiments in the Variable Density

Turbulence Tunnel (the VDTT) at the Max Planck Institute
for Dynamics and Self-Organization [22]. The wind tunnel
was a pressurizable closed-circuit wind tunnel, in which
either air or sulfur hexafluoride (SF6) circulated. By
changing the pressure of the gas, we could adjust its
kinematic viscosity ν, and thus the Reynolds number Rλ,
without changing the geometrical boundary conditions or
the mean speed of the flow. We set the pressure to values
between 1 and 15 bar and so prepared viscosities between
1.55 × 10−5 and 1.42 × 10−7 m2=s.
To produce turbulence, we used a biplanar grid of square

grid bars of mesh spacing of 18 cm that blocked about 40%
of the cross section l. The mean speed U of the flow was
kept constant at 4.2 m=s. The temperature of the gas was
stable to within 0.2 K over arbitrary times and was set to
fixed values between 22.0° C and 23.4° C.
The velocity of the gas was measured at either 7.1 or

8.3 m downstream of the grid with the nanoscale thermal
anemometry probe (NSTAP) developed at Princeton
University [23,24]. These were microfabricated hot-wire
probes, manufactured in two different ways such that they
had either 30- or 60-micron-long sensor elements. In
addition to the data acquired with the NSTAPs, we also
acquired data with larger hot-wire probes of traditional
construction produced by Dantec Dynamics, 0.45 or
1.25 mm long. The data acquired with the Dantec probes
are not shown in this Letter, as these probes subject to probe
size filtering effects at even moderate Reynolds numbers
[22,25], but they gave results consistent with those from the
NSTAP. Further details on the probe size and filtering
effects can be found in Supplemental Material [26] and in
the work by Hutchins et al. [27]. The longer data sets
presented in this Letter were acquired in conjunction with
those shown in our paper on the decay of turbulence [28],
but the present data are much longer as needed for the
different purpose of this Letter—providing sufficient sta-
tistics to uncover details of the inertial-range statistics.
The quantity measured by the hot-wire probes is the

velocity time series vðtÞ observed at a single position, low-
pass filtered at either 30 or 100 kHz, and sampled at either
60 or 200 kHz, respectively. The turbulence intensity u0
was between 1.6% and 3.6% of the mean speedU, which is
significantly smaller than the 15% turbulence intensity that
was found [29] to be sufficiently small to be able to invoke
Taylor’s hypothesis [30] in order to convert the functions of
time, vðtÞ, to functions of space, so that vðtUÞ ¼ vðxÞ
while still retaining the correct small-scale statistics and
key turbulent quantities such as the energy spectrum in
space. In flows with spatially [31] or temporally [32]
nonstationary mean flows, the demands on the turbulence
intensity are higher. However, the Variable Density
Turbulence Tunnel was designed to have a well-defined

FIG. 2. Logarithmic derivative of the fourth-order structure
function with respect to the separation. Even at the highest
Reynolds numbers measured, there seems to be only a slow
approach to a horizontal line that would correspond to power-law
scaling. The solid horizontal line with ζ4 ¼ 4=3 is the prediction
by Kolmogorov [4], and the dashed line the prediction of the
model by Lévéque [17]. The inset shows an enlargement of the
intersection region.
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velocity profile absent of shear paired with a constant mean
speed [22], so this limitation of Taylor’s hypothesis is not
limiting the viability of the results.
We divide the various data into two categories, which we

call data sets A and B. Each data set is comprised of
measurements made at different Reynolds numbers. What
separates the data sets is the length of the velocity records.
Data set A consisted of 14 measurements, which were each
between 6 and 9 h long, or up to about 106 integral length
scales long. Data set B consisted of four measurements,
which were each between 2 and 3 days long, or up to about
107 integral length scales long. Take note that the amount of
data obtained in these data sets exceeds any comparable
experiment by an order of magnitude, making it possible to
investigate fine details in the inertial-range structure of
turbulence. The integral length scale for all flows was about
0.1 m. Altogether, the data sets span Taylor Reynolds
numbers between 110 and 1600.
The aforementioned models considered statistics in the

inertial range where, as in the classical cascade model,
neither dissipation nor energy injection play a role.
However, in turbulence, there is no sharp distinctive scale
between the ranges where the statistics change. Even above
the Kolmogorov length, dissipation influences the statistics,
leading to the so-called near-dissipation range [33–35]. A
model describing the effects of dissipation in the near-
dissipation regime [36,37] has been developed in
Meneveau [38]. He, among others [39,40], noted that an
order-dependent viscous cutoff scale leads to deviations
from scaling behavior in the near-dissipation range that
grow larger as the Reynolds number increases. There are
numerous alternative models for the near-dissipation range,
for example, She [41], Biferale [42], and Chevillard,
Castaing, and Lévêque [43]. Additional investigations of
the transition between the dissipative and inertial ranges
[44,45] detailed the bottleneck in the energy spectrum. This
ringing in the energy spectrum affects the transitions
between different ranges in structure functions [46–48].
We do not discriminate between the models and chose to
compare our data with Meneveau’s multifractal model for
convenience. In the multifractal model, the structure
functions are functions of both r=η and r=L:

Sn ¼ fnðr=ηÞ
�
r
L

�
ζn
: ð4Þ

Using the predictions of the p model by Meneveau and
Sreenivasan [13,14], Meneveau [38] computes the func-
tional form of fnðr=ηÞ. The scaling exponents of the p
model are nonlinear functions of n [14]:

ζn ¼ 1 − log2 ½pn=3 þ ð1 − pÞn=3�: ð5Þ

Allowing for an order-dependent viscous cutoff scale,
Meneveau [38] shows that

fnðr=ηÞ ¼
�
1þ

�
ca

r
η
ðcbR3=2

λ Þð1−αpÞ=ð3þαpÞ
�

−2
�ðζn−nÞ=2

ð6Þ

with abbreviations ca ¼ 0.1 × 15−0.75, cb ¼ 1=13, and

αp ¼ −
pn=3log2pþ ð1 − pÞn=3log2ð1 − pÞ

pn=3 þ ð1 − pÞn=3 : ð7Þ

As in Meneveau [38], we set the free parameter p to 0.7.
p governs how unequally energy is distributed among
eddies breaking during the turbulent cascade.
Figure 3 shows ESS plots from the multifractal model.

For convenience, we present the logarithmic derivative of
the fourth-order structure function by the second-order
structure functions using the scaling exponents given by the
p model. Any other choice of structure function or scaling
exponent model gives qualitatively equivalent results. The
free turbulence parameters in this plot, η, L, and Rλ, are
extracted from data sets A and B for five data sets between
Rλ ¼ 110 (top) and Rλ ¼ 1600 (bottom) using Eq. (1) and
the velocity autocorrelation function. In the multifractal
model, there is a significant minimum in the near-dissipa-
tion range at around 20η as a result of the order-dependent
cutoff scale [34]. For r ≫ 20η, the logarithmic derivative
approaches its expected inertial-range limit of ζ4;2. Within
the multifractal model, there is strict power-law scaling in
the structure functions as long as r ≫ 20η.
It is a common procedure to extract scaling exponents

from ESS plots by averaging over scales that are reasonably
far away from the Kolmogorov scale, in accordancewith the
multifractal predictions. However, the high-Reynolds num-
ber, extremely long data sets from the VDTT demonstrate
the need for amore refined interpretation. Figure 4 shows the

Rλ

FIG. 3. Prediction for the shape of the logarithmic derivative of
the fourth-order structure function with respect to the second-
order structure function as given by the multifractal model [38]
using the p model [13] for the scaling exponents and turbulence
parameters from several VDTT data sets for Rλ between 110 and
1600. The arrow indicates the direction of increasing Reynolds
number. The model predicts a single oscillation with a minimum
at about 20η.
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logarithmic derivative of the fourth-order structure function
with respect to the second-order structure function for the
whole range of Reynolds numbers between Rλ ¼ 100 and
Rλ ¼ 1600 in data sets A and B. In the near-dissipation
range, between 10η and 30η the data are in good qualitative
agreement with the predictions of the multifractal model as
seen in Fig. 3. For instance, with an increasing Reynolds
number, the minimum in the near-dissipation range (∘)
grows significantly in depth. At smaller scales, the NSTAP
data are distorted by noise, and temporal and spatial filtering
influences the probe response. Nonetheless, our experi-
ments uncover features not reported in the literature. While
the multifractal model predicts a monotonic approach from
the near-dissipation range minimum toward the value of the
ratio of the scaling exponents, the VDTT data show an
overshoot (□) at around 70η, which is approximately
independent of the Reynolds number. In contrast to the
expectations, the data from the VDTT do not approach a
constant value at higher r=η. Instead, an only weakly
Reynolds-number-dependent and persistent substructure
in the inertial range becomes visible.
Figure 5 shows the positions, Π, of the substructures in

Fig. 4 in terms of the Kolmogorov scale and as a function of

the Reynolds number. These positions have been obtained
using a windowed parabolic fit to the data up to r ¼ 2L,
though other methods such as four-peak Gaussian fits yield
comparable results. In addition to the overshoot (square) at
about 70η, an additional extremum becomes apparent in
Fig. 4 (diamond) before the data succumb to noise at larger
r=η, potentially showing one further extremum (triangle).
These structures in the inertial range become visible only
with the long data sets from the VDTT at a high Reynolds
number; at either lower Reynolds numbers or with signifi-
cantly shorter data sets, these extrema are lost within the
noise. These new inertial-range structures in the structure
functions are associated with the bottleneck phenomenon in
the energy spectrum in the sense that the cascade process
does not uniformly transport energy across all associated
scales [44], and they can be embedded in refinements
of existing inertial-range models. The features are remi-
niscent of the lacunarity proposed by Smith, Fournier, and
Spiegel [49].
These findings have significant implications for the

interpretation of the statistical behavior of turbulent flows.
The persistent structures in the ESS plots can be understood
as a modulation of power-law behavior in the inertial range
and imply an oscillatory component in the structure
functions themselves, albeit small. An order-dependent
cutoff scale, as in the multifractal model, is by construction
unable to include multiple overshoots. A consequence is
that with different choices of averaging intervals the
same data yield different scaling exponents. The oscillatory
behavior demands refined models of the structure

η

FIG. 4. Logarithmic derivative of the fourth-order structure
with respect to the second-order structure function, obtained by
NSTAP probes. Highlighted are four representative curves
obtained with NSTAPs at Rλ ¼ 260 (plus), Rλ ¼ 510 (crosses),
Rλ ¼ 880 (stars), and Rλ ¼ 1030 (pentagrams). The data span
Taylor-scale Reynolds numbers from 110 to 1600. For compari-
son, the prediction of Lévéque [17] is indicated by a dashed line
and the p model by the dotted line. Note that the prediction in
Kolmogorov [6] is d log S4=d log S2 ¼ 2. The near-dissipation
range deviations are in agreement with the predictions of the
multifractal model [38]; there is an overshoot at about 20η
(circle). However, more structural details are observable in the
inertial range, being uncovered by the large amount of data.
These additional oscillatory features are marked by square,
diamond, and triangle.

FIG. 5. The positions Π of the extrema in the logarithmic
derivatives of Fig. 4 in terms of the Kolmogorov scale η and as a
function of the Reynolds number Rλ. The solid black line is
0.5L=η, predicted by our experiments. Circles represent the
location of the near-dissipation range minimum, squares the first
maximum, diamonds the second minimum, and triangles the
second maximum. Open symbols correspond to data set A, solid
symbols to data set B. Once the Reynolds number is high enough,
the features denoted by circles, squares, diamonds, and triangles
appear to be only weakly dependent on the Reynolds number.
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functions. The maxima and minima we find in the inertial
range are not strongly dependent on the Reynolds number
and are anchored to the small scales η. This unexpected
behavior shows that far away from the dissipation range, far
even from the near-dissipation range, dissipative effects still
qualitatively affect the statistics of the flow. It is not clear
from our data how far up from the dissipation range in scale
the oscillations persist. Future investigations should mea-
sure at an even higher Reynolds number to achieve a higher
ratio of L=η and to uncover more features of the inertial-
range statistics. With an active grid installed, the VDTT is
able to achieve Reynolds numbers significantly higher than
the classic grid data presented here and will be such a
further step.
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