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Underwater metastability hinders the durable application of superhydrophobic surfaces. In this work,
through thermodynamic analysis, we theoretically demonstrate the existence of an ultimate stable state on
underwater superhydrophobic surfaces. Such a state is achieved by the synergy of mechanical balance and
chemical diffusion equilibrium across the entrapped liquid-air interfaces. By using confocal microscopy,
we in situ examine the ultimate stable states on structured hydrophobic surfaces patterned with cylindrical
micropores in different pressure and flow conditions. The equilibrium morphology of the meniscus is tuned
by the dissolved gas saturation degree within a critical range at a given liquid pressure. Moreover, with
fresh lotus leaves, we prove that the ultimate stable state can also be realized on randomly rough
superhydrophobic surfaces. The finding here paves the way for applying superhydrophobic surfaces in
environments with different liquid pressure and flow conditions.
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Biomimetic superhydrophobic surfaces have been dem-
onstrated to be able to achieve significant drag reduction
effects in both laminar and turbulent flows [1–5]. It relies
on sustaining a large area fraction of shear-free liquid-air
interfaces on these surfaces, that is, the so-called Cassie-
Baxter (CB) state [6–12]. However, various factors, such as
enhanced liquid pressure [13–19] and progressive reduc-
tion of air pressure in entrapped cavities due to air diffusion
[20–23], have been observed to be able to induce the
superhydrophobic wetting transition abruptly [16,17] or
gradually with different time scales [20,24–26]. It contrib-
utes to prolonging the lifetime of the CB state by integrat-
ing sub-length-scale structures to resist high liquid pressure
[27–30]. However, wetting transition induced by air dif-
fusion is generally more critical, especially under high
liquid pressure and flow conditions, resulting from the
elevated gas diffusion flux [31–33]. A most recent experi-
ment showed an underwater CB state with extended life-
time on grooved structures, which, on the other hand, is
limited in quiescent water and hydrostatic pressure close to
the atmospheric one [34]. It still lacks a good understanding
of the underlying physics to realize sustainable underwater
superhydrophobicity on arbitrary surface structures under
different liquid pressure and flow conditions.
Here we explore the mechanism to achieve ultimate

stability on underwater superhydrophobic surfaces with
arbitrary structures and in different liquid pressures. The
metastability of underwater superhydrophobicity has been
widely observed previously [24,35], which, in fact, is
attributed to the air diffusion induced unestablished equi-
librium between the chemical potentials of the entrapped
free gas in the cavities and the dissolved gas in the bulk
water, leading to the collapse of the entrapped air. To access

a long-term stable superhydrophobic state, we employ a
thermodynamic free energy analysis of the submerged
system, with the chemical potentials of the free gas in
the cavities and the dissolved gas in the water being
particularly taken into account. The latter has been gen-
erally omitted or ignored in previous thermodynamic
analysis [35–38]. The present analysis leads to a both
mechanically and chemically equilibrated superhydropho-
bic state, which hints unlimited sustainability of the under-
water surface and thus is defined as an ultimate stable state.
To verify the theoretical analysis, confocal microscopic
experiments are carried out to demonstrate the ultimate
stable state on both regularly and randomly structured
hydrophobic surfaces in different liquid pressure and
moderate flow rate conditions.
When a superhydrophobic surface with arbitrary topology

is submerged underwater [see Fig. 1(a)], the equilibrium of
the entrapped air cavities depends on the feasibility of the
total free energy minimization of the thermodynamic system,
consisting of bulk liquid in the reservoir (L), entrapped air
[consisting of vapor (V) and free gas (G)], dissolved gas in
the liquid, and all the interfaces between liquid, air, and
solid. Based on thermodynamic analysis, the total free
energy of the system is obtained as [39],

Ftot ¼ ðpL −pV −pGÞVG þ γLGðALG þASG cosθYÞ
þ nGRT ln

pG

sðpL −p�
VÞ

þ nVRT ln
pV

p�
V
þF0ðpL;T; sÞ:

ð1Þ
Here, pG, pV , and pL are the entrapped gas, vapor,

and liquid pressure [see Fig. 1(a)], VG and nG are the
volume and mole number of entrapped gas, ALG and ASG
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are liquid-gas and solid-gas interface areas, and γLG and θY
are liquid-gas interface tension (0.0723 N=m for water at
temperature, T ¼ 23 °C) and contact angle, respectively.
The dissolved gas saturation degree (s) in the bulk water at
a given liquid pressure is defined by the ratio of the current
dissolved gas concentration to the saturated one (e.g., s ¼ 1
represents the saturated state). Consider a system with the
volume of liquid reservoir much larger than the gas cavities
consistent with our experiments below. It is reasonable to
assume s is constant at a given liquid pressure and
independent of the diffusion between air cavities and bulk
water. Moreover, R is ideal gas constant, nV is mole number
of vapor in the cavity, and p�

V represents the saturated vapor
pressure, which is constant under thermostatic assumption.
The first two terms on the right-hand side of Eq. (1) are
attributed to the bulk and the interfaces, respectively. The
third term, namely, the difference of chemical potential
between free gas in the entrapped air and dissolved gas in
the liquid causes alteration to the total free energy of the
system. The fourth term describes the free energy contri-
bution by unsaturated vapor in the closed air cavities [43].
The last term (F0) on the right side of Eq. (1) is the free
energy of a reference state, taken as the fully wetted Wenzel
state. Here, F0 is a constant for given liquid pressure (pL),
temperature (T), and dissolved gas saturation degree (s).

Then the final equilibrium state is derived by setting the
first-order variation of the total free energy to zero, i.e.,
δFtot ¼ 0 [39]. The first derivative with respect to the mole
number of vapor in the cavity (nV) leads to none other but
the equilibrium between water and vapor, i.e., pV ¼ p�

V .
Here, both vapor and gas are assumed as ideal gases. By
taking the volume of the entrapped air cavity and the mole
number of the entrapped free gas as variables, we obtain
two equations governing the equilibrium of the system, i.e.,

pG þ pV − pL ¼ γLGκ; ð2Þ
pG ¼ sðpL − p�

VÞ; ð3Þ

where κ is the meniscus curvature. Equation (2) is the
Laplace equation, representing the mechanical balance of
the meniscus, and Eq. (3) describes the chemical diffusion
equilibrium between the dissolved gas in the liquid and the
free gas entrapped in the cavities. Substituting Eq. (3) and
vapor saturation condition (pV ¼ p�

V) into Eq. (2) yields a
general relation illustrating a both mechanically and
chemically equilibrated state,

γLGκ ¼ ðpL − p�
VÞðs − 1Þ: ð4Þ

Equation (4) predicts the equilibrium morphology (κ) of the
meniscus for given liquid pressure (pL) and dissolved gas
saturation degree (s). Thermodynamic stability analysis
shows that the equilibrium state described by Eq. (4) can be
both mechanically and chemically stable depending on
surface morphology, namely, an ultimate stable state [39]. It
will be demonstrated by our confocal experiments (as will
be shown below).
We remark that the meniscus may detach from surface

structures, e.g., according to the Gibbs’ criterion for (de)
pinning [44]. Feasible meniscus curvature (κ) is usually
confinedwithin a certain range on a specific surface structure,
i.e., [κmin, κmax],where κmin and κmax denote theminimumand
maximum curvature values, respectively. Thus, according to
Eq. (4), for a given liquid pressure (pL), there exists a critical
range of the dissolved gas saturation degree (s), within which
the ultimate state can be achieved, that is,

1þ γLGκmin=ðpL − p�
VÞ < s < 1þ γLGκmax=ðpL − p�

VÞ:
ð5Þ

In this critical range, the ultimate stable morphology of the
meniscus is controllable by adjusting s.
As an example we consider a structured surface pat-

terned with cylindrical pores of radius (r ¼ 25 μm) and
height (H ¼ 40 μm) submerged underwater [Fig. 1(b)].
The meniscus may pin at the pore corners, depin and sag
into the pores, or expand on the structure surface, namely,
the pinned Cassie-Baxter (CB), depinned recession, and
expansion states, respectively [24,36]. Stability analysis of
these different states indicates that the both mechanically
and chemically equilibrated stable state can only be
achieved in the pinned CB state [39], which thus will be

FIG. 1. Schematics of meniscus morphologies on submerged
superhydrophobic surfaces with (a) arbitrary and (b) pore-
patterned structures. Dashed lines in (b) show the pinned CB
(1), depinned recession (2), and expansion (3) states, respectively.
(c) Prediction of the equilibrium curvature (κ) dependence on the
dissolved gas saturation degree (s) for different liquid pressures
(pL) on the pore-structured surface. Solid lines: stable states.
Dashed lines: unstable states. Here, θa and θr are chosen as 120°
and 95°, respectively, consistent with our experiments below.
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our focus below. In the CB state, the meniscus curvature is
given by κ ¼ 2 cos θ=r, where θ is the contact angle of the
meniscus with the pore sidewall. According to the Gibbs’
criterion for (de)pinning, θ is confined within [θr − π=2,
θa], where θr is the receding contact angle on the structure
surface, and θa is the advancing contact angle of the pore
sidewall. This leads to the upper and lower bounds of
the meniscus curvature, where ultimate stability can be
achieved, that is, κmin ¼ 2 cos θa=r and κmax ¼ 2 sin θr=r
[see Fig. 1(c) and Fig. s3 in the Supplemental Material
[39]]. Then the critical range of the dissolved gas saturation
degree (s) at different liquid pressure is calculated by
Eq. (5) and plotted in Fig. 1(c). Beyond this stable range,
the meniscus will depin from the pore corners and then sag
into the cavity until touching the bottom, or expand on the
top surface until coalescence with nearby bubbles.
The above thermodynamic analysis clearly indicates an

ultimate stable underwater superhydrophobic state that
depends on the liquid pressure and dissolved gas saturation
degree. In what follows, confocal microscopic experiments
are carried out to probe the ultimate stable state.
A laser scanning confocal microscope (LSM 710, Carl

Zeiss, Germany) with a 20× water immersion objective was
employed to directly monitor the evolution of the samples
under well-controlled conditions of liquid pressure, dissolved
gas saturation degree, and fluid flow [see Fig. 2(a) and more
details in the Supplemental Material [39]]. The samples with
regularly patterned micropores of height (H ¼ 40 μm) and
radius (r ¼ 25 μm) etched in silicon chips after hydrophobi-
lization were used for convenient quantitative measurements
[Fig. 2(b)]. Contact angles θa and θr on such pore-patterned
samples were measured to be approximately 120° and 95°,
respectively [24,36]. Fresh lotus leaves [Fig. 2(c)] were also
utilized as samples to demonstrate the validation of the theory
on randomly structured superhydrophobic surfaces, which
will be shown in the later section.
The sample was fixed at the bottom of a rectangular flow

channel with a top observing window for confocal micros-
copy and connected with a water tank for pressure control
and water circulation. The liquid pressure in the tank was
controlled mainly by the concentrated or reduced air
pressure (pa) and additionally by the water height (Hw)
with respect to the sample surface, i.e., pL ¼ ρgHw þ pa,

where ρ is water density, and g is the gravitational
acceleration. Here, water volume in the tank was kept
constant (approximately 0.7 L), and Hw was tuned by a lift
platform. A dissolved oxygen meter was employed to
monitor the dissolved gas concentration in deionized water.
Prior to each experiment, the water had been equilibrated
at the applied air pressure, pa [as demonstrated in Fig. s6
of the Supplemental Material [39]]. After the dissolved
oxygen meter showed a constant value for at least 20 min
at a preset liquid pressure, the two valves for liquid flow
were opened for water circulation with controlled flow
rate up to 30 mL=min by a peristaltic pump [Fig. 2(a)].
Simultaneously, the confocal microscope was used to
monitor the variation of the meniscus morphology with
time by using a quick line-scanning mode, which takes
approximately 10 s for each scan [24]. The meniscus
curvature was then measured from the 2D meniscus profile
[see Fig. s8 in the Supplemental Material [39]].
We remark that it is hard to achieve a long-term stable

and direct-controlled dissolved gas saturation degree (s) in
experiment [see Fig s7 in the Supplemental Material [39]].
Here we develop an alternative method to approach the
problem.The long-termstable dissolvedgas saturationdegree
(s) at liquid pressure (pL) can be controlled by adjusting the
water height (Hw) and/or the applied air pressure (pa) in the
present experiments. This is because the water is in fact
saturated with dissolved gas at applied air pressure (pa).
Otherwise, gas dissolution will continuously evolve until
saturation is reached. On the other hand, s is calculated with
respect to the total liquid pressure (pL). Thus, the relative
contributions of ρgHw and pa to pL determine s, that is, [39]

s ¼ 1 − ρgHw=ðρgHw þ pa − p�
VÞ: ð6Þ

Accordingly, in our experiments we use Hw and pa as
adjusting parameters to achieve desired, long-term stable s
and pL. Specifically, substituting Eq. (6) into Eq. (4) yields a
linear correlation between κ and Hw, i.e.,

γLGκ ¼ −ρgHw: ð7Þ
Equation (7) implies that the control of themeniscus curvature
by thewater height is independent of the liquid pressure using
the present experiment setup.

Figure 3(a) shows the curvature evolution of the menis-
cus under different air pressures (pa) ranging from 0.5 to
2.0 bar with or without flow rate (e.g., Q ¼ 0 or
23 mL=min) for two different water heights, Hw ¼ −13
and 19 cm. The measured curvature indeed only shows
dependence on the water height according to Eq. (7) and
keeps almost constant during the 4 h observation for all
experiment conditions [as shown in Fig. 3(a)]. We remark
that the upper bound of the measured life span is only
limited by the experiment setup itself. Thus the observation
here clearly indicates an ultimate stable underwater super-
hydrophobic state in different liquid pressure and moderate
flow rate conditions.
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FIG. 2. (a) Schematics of the experiment setup. Confocal
microscope is employed to examine the meniscus morphology
on the specimen under different liquid pressure and flow rate. The
gas dissolution in the water is assisted by a bubbling device.
Scanning electronic microscopic (SEM) images show the surface
structures of pore-patterned samples (b) and lotus leaf samples
(c), respectively.
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Moreover, the equilibrium curvature (κ) as a function of
the water height (Hw) was measured at a constant air
pressure in the tank, e.g., pa ¼ 1.2 bar. The plot in Fig. 3(b)
verifies the linear correlation between κ and Hw as
predicted by Eq. (7), indicating the meniscus morphology
can be independently controlled by the water height in the
present experiments.
Toseemoreclearlyhowtheultimate stable statedependson

the liquid pressure and dissolved gas saturation degree as
predicted by Eq. (4) in a more general case, we examine the
contourplots of γLGκ as a functionofpL and s inFig. 3(c).The
experiment data along each contour were obtained by main-
taining a constant liquid height (Hw) while tuning the air
pressure (pa) in the tank. On the other hand,Hw could also be
regulated toachievedifferentvaluesof γLGκwhilekeeping the
air pressure as a constant. The obtained experiment data are
shown along the dashed line in Fig. 3(c). Here, s is directly
calculated according to the measurements of the dissolved
oxygen meter, which shows consistent results with the
calculation by Eq. (6) [39]. The predicted upper and lower
bounds of γLGκ for achievable pinned states are 5.8 and
−2.9 kPa, respectively [as shown by the thick blue lines in
Fig. 3(c)].Within the twobounds [as describedbyEq. (5)], the
ultimate stable state can be achieved, as proved by the
experiment data of those solidsdots inFig. 3(c).Themeasured
curvature values show a good agreement with the theoretical
predictions by Eq. (4). The overall curvature error is within
7%, indicating the accuracy of the meniscus morphology
control in the present experiments. It is also seen that the stable
range of s decreases with the liquid pressure, agreeing well
with the tendency prediction by Fig. 1(c).
On the other hand, beyond these two bounds, the

meniscus becomes metastable or even unstable, leading to
its depinning from pore corners and subsequent sagging into
the air cavity or expanding on the upper structure surface
[see Fig. s9 in the Supplemental Material [39] ]. Those
experiment data are marked as open circles in Fig. 3(c). The

instability and recession of these depinned states have also
been widely investigated in Refs. [21,24,25,34,36] and thus
are not our present focus.
In order to prove the validation of the present framework

on randomly structured superhydrophobic surfaces, we
investigate the ultimate stability of self-cleaning lotus leaves
submerged underwater, e.g., at a pressure of 1.5 bar and a
flow rate of 23 mL=min. Figures 4(a) and 4(b) show the
snapshots of the evolution of the air cushion on the lotus
leave immersed in water saturated with air (i.e., s ¼ 1). It is
surprising to find that the air cushion keeps almost flat and
shows no tendency to decay over 4 h [see attached video in
the Supplemental Material [39]]. In contrast, the lotus leave
submerged under air-unsaturated water with s ¼ 0.67,
which is beyond the critical sable range of s, only sustains
its superhydrophobicity within 2 min, as shown in Figs. 4(c)
and 4(d). This is the same with the usual observation of
underwater metastability of lotus leaves [13,14]. Detailed
three-dimensional images of the sustained and collapsed
interfaces of lotus leaves can be found in Fig. s10 in the
Supplemental Material [39]. Thus, the ultimate stable state
predicted by Eq. (4) can not only be achieved on regularly
patterned structures but also on random surface structures.

FIG. 3. (a) Variation of curvature (κ) as a function of time (t) under air pressure ranging from 0.5 to 2 bar with or without flow rate
(Q ¼ 23 mL=min) at two different water height, Hw ¼ 19 and -13 cm. Solid dots: experiments in flow. Open dots: experiments in
quiescent water. (b) Dependence of curvature (κ) on water height (Hw) at a constant air pressure, pa ¼ 1.2 bar. Dots: experiments. Solid
line: theoretical prediction. Dashed lines: predicted upper and lower curvature bounds, respectively. (c) Contour plot of γLGκ as a
function of liquid pressure (pL) and dissolved gas saturation degree (s) in the pinned CB state according to Eq. (4). Numbers with unit
[kPa] indicate the values of γLGκ for the corresponding lines or dots. Solid lines: theoretical prediction. Solid and open dots: experiments
in pinning stable and depinned unstable states, respectively. The dashed line shows a series of experiments carried out by maintaining the
air pressure in the tank.

FIG. 4. Snapshots of confocal microscopy images showing the
long-term stable (a), (b) and unstable (c), (d) lotus leave surfaces
under a liquid pressure of 1.5 bar and a flow rate of 23 mL=min.
In (a) and (b), the dissolved gas saturation degree, s ¼ 1. And in
(c) and (d), s ¼ 0.67. The blue region indicates water. The planar
red surface is the water-air interface. The red rough part beneath
is the microstructure of the lotus leave.
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The key is to maintain both mechanical balance and
chemical diffusion equilibrium at the submerged super-
hydrophobic surfaces.
In summary, through thermodynamics analysis with

considering the chemical potential of dissolved gas in water,
we predict an ultimate stable superhydrophobic state sub-
merged underwater, which is both mechanically and chemi-
cally equilibrated. We have carried out confocal microscopic
experiments and directly observed the ultimate stable under-
water superhydrophobic state. It is evident that the equilib-
rium morphology of the meniscus is controllable by
adjusting the dissolved gas saturation degree within a critical
range for given liquid pressure. Last but not least, in contrast
to the preceding metastable observation, we have also
demonstrated the ultimate stable superhydrophobicity on
submerged fresh lotus leaves with random surface structures.
The current work implies that the ultimate stable state can be
achieved in different pressure, arbitrary rough superhydro-
phobic surface and even flow conditions. Moreover, the
present theory is not stipulated on hydrophobic structures. It
may even open the avenue to realize ultimate stable super-
hydrophobic states on hydrophilic structured surfaces. The
finding here contributes to a better understanding of the
underlying mechanism of long-term stability of underwater
superhydrophobicity and also promotes the wide application
of these surfaces in various environments.
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